Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1274977

Artificial neural network model for predicting sex using dental and orthodontic measurements


Anić Milošević, Sandra; Medančić, Nataša; Čalušić Šarac, Martina; Dumančić, Jelena; Brkić, Hrvoje
Artificial neural network model for predicting sex using dental and orthodontic measurements // Korean Journal of Orthodontics, 53 (2023), 3; 194-204 doi:10.4041/kjod22.250 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1274977 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Artificial neural network model for predicting sex using dental and orthodontic measurements

Autori
Anić Milošević, Sandra ; Medančić, Nataša ; Čalušić Šarac, Martina ; Dumančić, Jelena ; Brkić, Hrvoje

Izvornik
Korean Journal of Orthodontics (1225-5610) 53 (2023), 3; 194-204

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Odontometry, Principal component analysis, Artificial neural networks, Computer algorithm

Sažetak
Objective: To investigate sex-specific correlations between the dimensions of permanent canines and the anterior Bolton ratio and to construct a statistical model capable of identifying the sex of an unknown subject. Methods: Odontometric data were collected from 121 plaster study models derived from Caucasian orthodontic patients aged 12–17 years at the pretreatment stage by measuring the dimensions of the permanent canines and Bolton's anterior ratio. Sixteen variables were collected for each subject: 12 dimensions of the permanent canines, sex, age, anterior Bolton ratio, and Angle’s classification. Data were analyzed using inferential statistics, principal component analysis, and artificial neural network modeling. Results: Sex-specific differences were identified in all odontometric variables, and an artificial neural network model was prepared that used odontometric variables for predicting the sex of the participants with an accuracy of > 80%. This model can be applied for forensic purposes, and its accuracy can be further improved by adding data collected from new subjects or adding new variables for existing subjects. The improvement in the accuracy of the model was demonstrated by an increase in the percentage of accurate predictions from 72.0–78.1% to 77.8–85.7% after the anterior Bolton ratio and age were added. Conclusions: The described artificial neural network model combines forensic dentistry and orthodontics to improve subject recognition by expanding the initial space of odontometric variables and adding orthodontic parameters.

Izvorni jezik
Engleski



POVEZANOST RADA


Ustanove:
Stomatološki fakultet, Zagreb,
Fakultet za dentalnu medicinu i zdravstvo, Osijek

Poveznice na cjeloviti tekst rada:

doi e-kjo.org

Citiraj ovu publikaciju:

Anić Milošević, Sandra; Medančić, Nataša; Čalušić Šarac, Martina; Dumančić, Jelena; Brkić, Hrvoje
Artificial neural network model for predicting sex using dental and orthodontic measurements // Korean Journal of Orthodontics, 53 (2023), 3; 194-204 doi:10.4041/kjod22.250 (međunarodna recenzija, članak, znanstveni)
Anić Milošević, S., Medančić, N., Čalušić Šarac, M., Dumančić, J. & Brkić, H. (2023) Artificial neural network model for predicting sex using dental and orthodontic measurements. Korean Journal of Orthodontics, 53 (3), 194-204 doi:10.4041/kjod22.250.
@article{article, author = {Ani\'{c} Milo\v{s}evi\'{c}, Sandra and Medan\v{c}i\'{c}, Nata\v{s}a and \v{C}alu\v{s}i\'{c} \v{S}arac, Martina and Duman\v{c}i\'{c}, Jelena and Brki\'{c}, Hrvoje}, year = {2023}, pages = {194-204}, DOI = {10.4041/kjod22.250}, keywords = {Odontometry, Principal component analysis, Artificial neural networks, Computer algorithm}, journal = {Korean Journal of Orthodontics}, doi = {10.4041/kjod22.250}, volume = {53}, number = {3}, issn = {1225-5610}, title = {Artificial neural network model for predicting sex using dental and orthodontic measurements}, keyword = {Odontometry, Principal component analysis, Artificial neural networks, Computer algorithm} }
@article{article, author = {Ani\'{c} Milo\v{s}evi\'{c}, Sandra and Medan\v{c}i\'{c}, Nata\v{s}a and \v{C}alu\v{s}i\'{c} \v{S}arac, Martina and Duman\v{c}i\'{c}, Jelena and Brki\'{c}, Hrvoje}, year = {2023}, pages = {194-204}, DOI = {10.4041/kjod22.250}, keywords = {Odontometry, Principal component analysis, Artificial neural networks, Computer algorithm}, journal = {Korean Journal of Orthodontics}, doi = {10.4041/kjod22.250}, volume = {53}, number = {3}, issn = {1225-5610}, title = {Artificial neural network model for predicting sex using dental and orthodontic measurements}, keyword = {Odontometry, Principal component analysis, Artificial neural networks, Computer algorithm} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font