Pregled bibliografske jedinice broj: 1273246
Revolutionizing Soccer Injury Management: Predicting Muscle Injury Recovery Time Using ML
Revolutionizing Soccer Injury Management: Predicting Muscle Injury Recovery Time Using ML // Applied sciences (Basel), 13 (2023), 10; 6222, 14 doi:10.3390/app13106222 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1273246 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Revolutionizing Soccer Injury Management: Predicting
Muscle Injury Recovery Time Using ML
Autori
Skoki, Arian ; Napravnik, Mateja ; Polonijo, Marin ; Štajduhar, Ivan ; Lerga, Jonatan
Izvornik
Applied sciences (Basel) (2076-3417) 13
(2023), 10;
6222, 14
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
return-to-play ; machine learning ; recovery estimation ; soccer injuries
Sažetak
Predicting the optimal recovery time following a soccer player's injury is a complex task with heavy implications on team performance. While most current decision-based models rely on the physician's perspective, this study proposes a machine learning (ML)-based approach to predict recovery duration using three modeling techniques: linear regression, decision tree, and extreme gradient boosting (XGB). Performance is compared between the models, against the expert, and together with the expert. The results demonstrate that integrating the expert's predictions as a feature improves the performance of all models, with XGB performing best with a mean $R^2$ score of $0.72$, outperforming the expert's predictions with an $R^2$ score of $0.62$. This approach has significant implications for sports medicine, as it could help teams make better decisions on the return-to-play of their players, leading to improved performance and reduced risk of re- injury.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)
undefined
Ustanove:
Tehnički fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus