Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1270386

Analysis of Variables Influencing Scour on Large Sand-Bed Rivers Conducted Using Field Data


Harasti, Antonija; Gilja, Gordon; Adžaga, Nikola; Žic, Mark
Analysis of Variables Influencing Scour on Large Sand-Bed Rivers Conducted Using Field Data // Applied Sciences, 13 (2023), 9; 5365, 19 doi:10.3390/app13095365 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1270386 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Analysis of Variables Influencing Scour on Large Sand-Bed Rivers Conducted Using Field Data

Autori
Harasti, Antonija ; Gilja, Gordon ; Adžaga, Nikola ; Žic, Mark

Izvornik
Applied Sciences (2076-3417) 13 (2023), 9; 5365, 19

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
bridge scour ; sand-bed ; principal component analysis ; multiple non-linear regression ; PSDB-2014

Sažetak
Throughout the lifespan of a bridge, morphological changes in the riverbed affect the variable action-imposed loads on the structure. This emphasizes the need for accurate and reliable data that can be used in model-based projections targeted for the identification of risk associated with bridge failure induced by scour. The aim of this paper is to provide an analysis of scour depth estimation on large sand-bed rivers under the clear water regime, detect the most influential (i.e., explanatory) variables, and examine the relationship between them and scour depth as a response variable. A dataset used for the analysis was obtained from the United States Geological Survey’s extensive field database of local scour at bridge piers, i.e., the Pier-Scour Database (PSDB-2014). The original database was filtered to exclude the data that did not reflect large sand-bed rivers, and several influential variables were omitted by using the principal component analysis. This reduction process resulted in 10 influential variables that were used in multiple non-linear regression scour modeling (MNLR). Two MNLR models (i.e., non- dimensional and dimensional models) were prepared for scour estimation ; however, the dimensional model slightly overperformed the other one. According to the Pearson correlation coefficients (r), the most influential variables for estimating scour depth were as follows: Effective pier width (r = 0.625), flow depth (r = 0.492), and critical and local velocity (r = 0.474 and r = 0.436), respectively. In the compounded hydraulic-sediment category, critical velocity had the greatest impact (i.e., the highest correlation coefficient) on scour depth in comparison to densimetric Froude and critical Froude numbers that were characterized by correlation coefficients of r = 0.427 and r = 0.323, respectively. The remaining four variables (local and critical bed shear stress, Froude number, and particle Reynolds number) exhibited a very weak correlation with scour depth, with r < 0.3.

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
UIP-2019-04-4046 - Daljinsko praćenje erozije riprap zaštite od podlokavanja na velikim rijekama u stvarnom vremenu (R3PEAT) (Gilja, Gordon, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Građevinski fakultet, Zagreb,
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mark Žic (autor)

Avatar Url Nikola Adžaga (autor)

Avatar Url Antonija Harasti (autor)

Avatar Url Gordon Gilja (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com fulir.irb.hr

Citiraj ovu publikaciju:

Harasti, Antonija; Gilja, Gordon; Adžaga, Nikola; Žic, Mark
Analysis of Variables Influencing Scour on Large Sand-Bed Rivers Conducted Using Field Data // Applied Sciences, 13 (2023), 9; 5365, 19 doi:10.3390/app13095365 (međunarodna recenzija, članak, znanstveni)
Harasti, A., Gilja, G., Adžaga, N. & Žic, M. (2023) Analysis of Variables Influencing Scour on Large Sand-Bed Rivers Conducted Using Field Data. Applied Sciences, 13 (9), 5365, 19 doi:10.3390/app13095365.
@article{article, author = {Harasti, Antonija and Gilja, Gordon and Ad\v{z}aga, Nikola and \v{Z}ic, Mark}, year = {2023}, pages = {19}, DOI = {10.3390/app13095365}, chapter = {5365}, keywords = {bridge scour, sand-bed, principal component analysis, multiple non-linear regression, PSDB-2014}, journal = {Applied Sciences}, doi = {10.3390/app13095365}, volume = {13}, number = {9}, issn = {2076-3417}, title = {Analysis of Variables Influencing Scour on Large Sand-Bed Rivers Conducted Using Field Data}, keyword = {bridge scour, sand-bed, principal component analysis, multiple non-linear regression, PSDB-2014}, chapternumber = {5365} }
@article{article, author = {Harasti, Antonija and Gilja, Gordon and Ad\v{z}aga, Nikola and \v{Z}ic, Mark}, year = {2023}, pages = {19}, DOI = {10.3390/app13095365}, chapter = {5365}, keywords = {bridge scour, sand-bed, principal component analysis, multiple non-linear regression, PSDB-2014}, journal = {Applied Sciences}, doi = {10.3390/app13095365}, volume = {13}, number = {9}, issn = {2076-3417}, title = {Analysis of Variables Influencing Scour on Large Sand-Bed Rivers Conducted Using Field Data}, keyword = {bridge scour, sand-bed, principal component analysis, multiple non-linear regression, PSDB-2014}, chapternumber = {5365} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • AGRIS International
  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font