Pregled bibliografske jedinice broj: 1268934
Prepoznavanje pojačivača u genomu metodama strojnog učenja
Prepoznavanje pojačivača u genomu metodama strojnog učenja, 2022., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 1268934 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Prepoznavanje pojačivača u genomu metodama strojnog učenja
(Application of machine learning methods to genome-wide prediction of enhancers)
Autori
Milisavljević, Alexandra
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
30.06
Godina
2022
Stranica
56
Mentor
Domazet-Lošo, Mirjana
Ključne riječi
enhancers ; genome ; machine learning ; SVM ; MLP ; ensemble learning
Sažetak
Enhancers are cis-regulatory elements of DNA that positively regulate the transcription of their target genes. It is estimated that there are hundreds of thousands of enhancers in the human genome, which is too large a task to check experimentally. By applying machine learning methods, we could obtain models of adequate accuracy to predict if a DNA sequence is an enhancer or not. This thesis observes three classes of machine learning methods: support vector machine SVM, multilayer perceptron neural network MLP, and ensemble learning. The results of our models are then compared to existing tools for identifying enhancers, iEnhancer-2L and iEnhancer-EL. We also provide a visualization of the predicted results for the different models on the same DNA sequence.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Mirjana Domazet Lošo
(mentor)