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Abstract: It is of the utmost importance to accurately estimate different ships’ weights during their 
design stages. Additionally, lightship displacement (LD) data are not always easily accessible to 
shipping stakeholders, while other ships’ dimensions are within hand’s reach (for example, through 
data from the online Automatic Identification System (AIS)). Therefore, determining lightship dis-
placement might be a difficult task, and it is traditionally performed with the help of mathematical 
equations developed by shipbuilders. Distinct from the traditional approach, this study offers the 
possibility of employing machine learning methods to estimate lightship displacement weight as 
accurately as possible. This paper estimates oil tankers’ lightship displacement using two ships’ 
dimensions, length overall, and breadth. The dimensions of oil tanker ships were collected from the 
INTERTANKO Chartering Questionnaire Q88, available online, and, because of similar block coef-
ficients, all tanker sizes were used for estimation. Furthermore, multiple linear regression and ex-
treme gradient boosting (XGBoost) machine learning methods were utilised to estimate lightship 
displacement. Results show that XGBoost and multiple linear regression machine learning methods 
provide similar results, and both could be powerful tools for estimating the lightship displacement 
of all types of ships. 
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1. Introduction 
During the preliminary and final stages of ship design, estimating the various weight 

groups and positions of the ship’s centroids is fundamental. Any miscalculations and 
omissions might significantly influence the ship’s cargo transport capacity, speed, stabil-
ity, and overall safety during a voyage [1]. Another important reason for accurate estima-
tion is the relationship between a ship’s construction cost and its weight, especially its 
structural steel weight. Therefore, it is necessary to estimate the weights of different 
groups of ships as accurately as possible during the preliminary design of the ship. Fur-
thermore, a shipbuilder’s initial tender conditions to a shipowner depend on the accuracy 
of the estimation of various steel weight groups [1]. 

According to the International Convention for the Safety of Life at Sea (SOLAS II-
1/2.21 and SOLAS II-2/3.28), “lightweight is the displacement of a ship in tonnes without 
cargo, fuel, lubricating oil, ballast water, fresh water and feedwater in tanks, consumable 
stores, and passengers and crew and their effects” [2]. “Lightship condition is a ship com-
plete in all respects, but without consumables, stores, cargo, crew and effects, and without 
any liquids on board except that machinery and piping fluids, such as lubricants and hy-
draulics, are at operating levels” [3]. 

Lightship condition is not important just for ship-stability reasons. For example, in 
the ship recycling industry, ships are valued primarily based on their lightship displace-
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ment (LD), that is, the weight of the ship when ready for service [4]. It is the most im-
portant unit of measure in the shipbreaking process [5,6]. The price of a ship sold for 
scrapping is usually quoted in USD ($) per ton of LD. Furthermore, based on lightweight 
displacement, the recycling shipyard calculates the estimated recycling costs and plans 
recycling activities [7]. However, lightship weight data are often not easily accessible (for 
example, if a buyer of a ship to be recycled wants to check its weight before price negoti-
ations between brokers). Therefore, this paper aims to develop a lightship displacement 
(LD) estimation model based on two easily accessible ship dimensions: length overall 
(LOA) and breadth (B). Length overall (LOA) is a ship’s length measured from the fore-
most point of its stem to the aftermost part of its stern. Breadth (B) is a ship’s width at its 
widest point. It must be noted that a ship’s length and breadth are correlated dimensions, 
and length to breadth (L/B) is a dimensionless ratio that is different for different ship 
types. Typical values for cargo ships are 6.0–7.0, those of tankers and bulk carriers are 5.5–
6.5, and those of passenger ships are 6.0–8.0 [8]. Larger values of this ratio are favourable 
for a ship’s speed but unfavourable for its manoeuvrability. LOA and B are easily acces-
sible data that can be accessed from various sources, the most popular being the various 
Automatic Identification System (AIS) platforms available online. In this way, lightship 
weight for a specific ship might be obtained using those two ship dimensions. 

Čudina, in [9], presented design procedures and mathematical modelling that could 
be applicable in the initial design stages of merchant ships. Mathematical models pre-
sented in the paper include the optimisation of the main characteristics of bulk carriers 
and tankers and the optimisation of the commercial effects of new buildings. In [10], Duru 
developed a method for estimating the lightship weight and deadweight of a projected 
fishing-vessel design. This newly developed method includes several existing methods, 
such as the cubic number method, the rate per meter method, and the rational equation 
method, and is recommended by various classification societies. Lin and Shaw [11] pre-
sented a feature-based estimation (FSE) method to estimate a ship’s steel weight and cen-
tre of gravity in the preliminary designing phase. Their approach utilises principal com-
ponent analysis (PCA) to identify principal parameters from the ship’s parameters and its 
main structural components as well as to develop equations for estimating steel weight. 
Furthermore, a regression that is based on each structural section’s characteristics is used 
to adjust the estimated weight. In [12], the authors analysed 58 ships of different types and 
capacities and systematically investigated their lightship weight distribution. The authors 
determined the limiting lightship longitudinal and vertical centre of gravity range for bulk 
carriers, crude oil tankers, liquefied gas carriers (LGC), container ships, and pure car car-
riers (PCC). Obreja and Chiroşcă, in [13], developed a PHP-Ship Weight computer code, 
aiming to estimate the components of the lightship and the deadweight of ships. The es-
timation of the ship’s weight components in their software is based on parametric models. 
In [14], the author determined regression formulas for the main dimensions of bulk carri-
ers and tankers. Tankers and bulk carriers were categorised into groups according to size, 
and regression formulas were developed for each group separately. In [15], the authors 
developed an artificial neural network (ANN) to predict the main particulars of a chemical 
tanker at the preliminary design stage. The obtained results are in good agreement with 
actual data and corroborate that the model can be used to predict the main dimensions of 
chemical tankers; however, its applications for chemical tankers with innovative designs 
might be inadequate. An empirical model to predict the lightship displacement of jack-up 
rigs was developed in [16]. The authors compiled a lightship displacement dataset for 
jack-up rigs and utilised linear regression to develop a model to estimate lightship dis-
placement in jack-up rigs. Their model explains 91% of the variation in lightship displace-
ment. A model to calculate lightship weight using empirical methods was presented in 
[17]. The authors presented and analysed existing frameworks for estimating lightship 
weight based on empirical data from existing ships. The study integrated and calibrated 
a number of empirical methods and established the use of the least squares method for 
determining the method that identifies lightship values closest to the ones observed in 
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databases. Lightship weight was estimated for three types of cargo ships, tankers, bulk 
carriers, and container ships. Furthermore, it is necessary to mention a study by Cepowski 
[18]. The author developed regression formulas for main tanker dimensions (length be-
tween perpendiculars—LBP, breadth—B, and draught moulded—T). Regression formu-
las were developed separately for Handysize, Medium Range, Panamax, Post Panamax, 
Aframax, Suezmax, and VLCC tankers, and the variables used in the study were 
deadweight and velocity. In [19], the authors used an artificial neural network (ANN) and 
multiple nonlinear regression to estimate the length between perpendiculars for container 
ships. The variables used in the study were the twenty-foot equivalent unit (TEU) and 
velocity of the ships. 

However, to the best of the authors’ knowledge, there is no research in the literature 
aimed at estimating the lightship weight of merchant ships that employs only two char-
acteristics (dimensions) of the ship, namely length overall and breadth. Therefore, this 
paper focuses on estimating the lightship displacement (LD) of existing merchant ships, 
specifically oil tankers, utilising linear regression and extreme gradient boosting machine 
learning (XGBoost ML) methodologies to analyse the known dimensions (LOA and B) of 
a tanker ship. 

The structure of tanker ships is specific because of the nature of the dangerous cargo 
they transport—primarily crude oil and its products. Because tanker ship accidents can 
cause catastrophic consequences, including fatalities, injuries, loss of ships and cargo, and 
substantial environmental pollution, the International Maritime Organization (IMO) has 
introduced additional safety measures in the form of structural improvements (for exam-
ple, double hull). In addition, the International Association of Classification Societies 
(IACS) adopted the Common Structural Rules for Bulk Carriers and Oil Tankers to ensure 
maximum structural safety for oil tankers; the latest rule entered into force in July 2019. 
Although the weight of marine steel is optimised to reduce the weight of an empty ship 
so that it can carry as much cargo as possible, introducing new rules to increase safety has 
resulted in a 2% to 8% increase in lightship weight [20,21]. This research focuses on oil 
tankers because they exhibit specific structures as a result of the dangerous nature of the 
cargo they transport and of the improved construction standards implemented by the In-
ternational Maritime Organization (IMO) and the IACS. This has resulted in oil tankers 
having a higher steel content compared to other types of ships, making them desirable in 
ship-recycling industries such as the Bangladesh shipbreaking industry [22]. 

Tanker ships can be categorised into five major groups according to their size (Figure 
1) [9]: 
• Handy-sized oil tankers of up to 45,000–50,000 deadweight (DWT) with a breadth (B) 

limited by the ability to pass through the Panama Canal; 
• Panamax-sized oil tankers that are built to pass through the Panama Canal and, in 

most cases, with an LOA limited to 228.6 m; 
• Aframax-sized oil tankers with an approximate DWT between 80,000 and 110,000 

tons at the maximum draught; 
• Suezmax-sized oil tankers with an approximate DWT between 150,000 and 170,000 

tons; 
• Very large crude carriers (VLCC), or a group of oil tankers of approximately 300,000 

DWT. 
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Figure 1. Midship sections of (a) handy-sized, (b) Panamax, (c) Aframax, and (d) Suezmax tankers. 

However, lightship displacement was not estimated separately for each group of oil 
tankers in this paper because of their similar hull designs and block coefficients (see Table 
1), but tankers of all sizes were included in the research. 

Table 1. Block coefficients of tanker groups [23]. 

Tanker Group Handy Panamax Aframax Suezmax VLCC 
Block coeff. (CB) 0.747–0.763 0.817 0.797 0.799 0.788 
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The authors developed a framework (using multiple linear regression and extreme 
gradient boosting machine learning, as shown in Sections 3 and 4) through which a 
tanker’s lightship displacement can be estimated using known variables (length overall 
and breadth) and a dummy variable (tanker size group). In this way, existing tankers’ 
lightship weight estimation might be facilitated, enabling easier and more accurate esti-
mations for interested stakeholders, such as ship designers and shipowners. 

The rest of the paper is organised as follows: Section 2 presents formulas for the esti-
mation of the lightship weight of merchant ships. Section 3 is Methodology, where the 
logic of the research procedure and methods is described. Finally, research results and a 
discussion of them are given in Section 4, while concluding thoughts and future research 
directions in this area are given in Section 5. 

2. Lightship Weight Calculations 
As mentioned in the introduction section, an estimation that is as accurate as possible 

of the weight components of a ship is fundamental during ship design because any inac-
curacies might have a major effect on the ship’s safety [1]. Therefore, it is of crucial im-
portance to estimate various ship components’ weights as accurately as possible. In this 
section, the authors present equations adopted from [1] to calculate ship components’ 
weights. 

A ship’s displacement can be calculated using Equation (1): ∆= 𝐷𝑊𝑇 + 𝑊  (1) 

where Δ is the weight of displaced water, DWT is deadweight (transport capacity), and 
WLS is lightship weight (weight of an empty ship). Deadweight can be calculated using 
Equation (2): 𝐷𝑊𝑇 = 𝑊 + 𝑊 + 𝑊 + 𝑊 + 𝑊 + 𝐵 (2) 

where WLO is payload weight, WF is fuel weight including lubricating oil, WPR is the weight 
of provisions and freshwater supplies, WP is the weight of passengers (if any) and their 
effects (luggage), WCR is the weight of crew and their effects, and B is the weight of non-
permanent ballast. 

For the purposes of the estimate, lightship weight can be considered as the sum of 
three main components and the margin of uncertainty: 𝑊 = 𝑊 + 𝑊 + 𝑊 + 𝑅 (3) 

where WST is the weight of the steel structure, WOT is the weight of the outfitting, WM is the 
weight of machinery, and R is a reserve. 

The weight of the steel structure includes the weight of all components of a ship’s 
steel structure and corresponds approximately to a shipyard’s steelwork. Thus, in addi-
tion to all of a ship’s plates and stiffeners, the mounting base of the engine, the superstruc-
ture and deckhouses (even if they are made of different materials, such as aluminium, for 
example), the masts, the rudder, the rudder shaft, the hatch coamings, and the bulwark 
are also included in this component group as well [1]. 

The outfitting weight includes the weight of all fittings of a “naked” ship and all the 
ship’s separable outfittings, except for the machinery outfitting. Specific components of 
the WST can be taken as components of WOT, such as the masts and the rudder, noting that 
it depends on the shipyard or ship designer [1]. 

WM can be calculated as: 𝑊 = 𝑊 + 𝑊 + 𝑊  (4) 

where WMM is the weight of the main machinery, WMS is propeller shaft and propeller 
weight, and WMR is the remaining machinery weight. 

Main machinery weight includes the main engine weight and gearbox weight (if 
any), the turbine weight for turbine-driven ships, and the gearbox and boilers. 
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The remaining machinery weight includes the weight of pumps of any kind, any pip-
ing inside the engine room, funnels, main electric generators, transformers and switch-
boards, any supporting mechanical components of the main engine, and alike. 

Percentages of tanker weight groups relative to lightship weight are presented in Ta-
ble 2 [24]. 

Table 2. Percentages of tanker weight groups relative to lightship weight. 

Tanker Size 
(DWT) DWT/Δ (%) WST/WLS (%) WOT/WLS (%) WM/WLS (%) 

25,000–120,000 65–83 73–83 5–12 11–16 
≥200,000 83–88 75–83 9–13 9–16 

The reserve (or margin of uncertainty) R is laid down in the preliminary design to 
cover possible inexact initial approximations of the various weight groups. For example, 
the typical R-value in the preliminary design stage in lightship weight is 1–2% for tankers 
[1]. 

The lightship structure and equipment load compose static and dynamic compo-
nents. The static load results from gravity, and the dynamic load can be divided into 
quasi-static and inertial elements. The quasi-static load results from gravity, considering 
a ship’s instantaneous roll and pitch inclinations. The inertial load results from instanta-
neous local accelerations on the lightship structure and equipment caused by a ship’s mo-
tions in six degrees of freedom (DoF) [25]. 

Furthermore, a regression analysis can be used to estimate the lightship weight, and 
some examples of regression formulas (Equations (5) and (6)) for the oil tankers presented 
in [1] are shown below: 𝐿𝑆 = 2.9186 ∗ 𝐷𝑊𝑇 .  (5) 𝐿𝑆 ∆ = 1.62433 ∗ 𝐷𝑊𝑇 .  (6) 

where LS is lightship weight, DWT is deadweight, and Δ is tanker displacement. 
Lightship weight calculation is presented in this section, whereas an empty ship’s 

weight is divided into components. An accurate estimate of each component’s weight dur-
ing the preliminary and final stages of ship design is of the utmost importance for a ship’s 
safety and for economic reasons (overall cargo capacity). Apart from the “traditional” ap-
proach to lightship weight estimation, other methods might be beneficial for ship design-
ers, shipyards, and shipowners (and buyers of second-hand and scrap ships). The follow-
ing section presents a methodology using multiple linear regression and machine learning 
to estimate the lightship weight of tanker ships. 

3. Methodology 
The research process is illustrated in Figure 2. 
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Figure 2. Research phases in this study. 

In the first research phase, the authors compiled ship data. Data were collected from 
the International Association of Independent Tanker Owners (INTERTANKO) Chartering 
Questionnaire Q88, available online. Questionnaire 88 includes updated information for 
the assessment of a ship’s suitability and risk when chartering tankers. It is the periodi-
cally revised (5th version currently) accepted tanker industry standard for information on 
all types of tankers and tanker terminals worldwide for vetting purposes. Only oil tanker 
ships were included in this study, irrespective of their size. Three tanker dimensions were 
used for this research: length overall (LOA), breadth (B), and lightship displacement (LD). 
Additionally, each tanker’s group, according to its size, was added as a dummy variable 
to improve prediction results (the block coefficient was indirectly included through the 
tanker size group). Duplicated data (sister ships) were excluded from the study and dis-
carded in the second phase of the research. In total, 80 oil tankers were included in the 
study (Table A1). Figure 3 presents the sample size according to tanker group. 

 

Figure 3. Sample size according to oil tanker type. 

A multiple linear regression (MLR) analysis was performed using dimensions ob-
tained from the data collected in the third research phase (80 tankers). This analysis used 
the ordinary least squares (OLS) method performed in Python using the “statsmodels” 
package. It describes the relationship between dependent and explanatory (independent) 
variables [26]. In this paper, the dependent variable was oil tanker lightship displacement 
(LD), the independent variables were length overall (LOA) and ship breadth (B), and the 
dummy variable was the tanker group. It is a very efficient method that can be used for 
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prediction, forecasting, or error reduction [27]. The general multiple regression equation 
is: 

Yi = α + β1xi1 + β2xi2 + … + βpxip + ei for i = 1,…n (7)

where Yi is the response or dependent variable, α is an intercept parameter, xi1…xip are 
explanatory variables, β1…βp are regression coefficients, and ei is the error variable [28]. 
Multiple linear regression was performed using the software Python’s “statsmodels” li-
brary to develop a model for estimating lightship displacement based on length overall 
(LOA), breadth (B), and groups of oil tanker ships. 

In phase four, the authors applied the extreme gradient boosting machine learning 
method (XGBoost ML) using the Python module XGBoost Regressor to check how suc-
cessfully ML can predict lightship displacement and whether there any differences be-
tween the two models. Machine learning is considered a segment of artificial intelligence 
(AI). ML methodologies can be used to create models based on “training data” (sample 
data) to make predictions or decisions [29]. It is a branch of computational algorithms 
developed to mimic human intelligence by learning from the environment. ML-based 
techniques have been successfully applied in various fields, such as computer vision, 
spacecraft engineering, finance, entertainment, and medical and are considered a work-
horse in the big-data era [30]. The extreme gradient boosting (XGBoost) method, which is 
“an optimised distributed gradient boosting library designed to be highly efficient, flexi-
ble and portable” [31], was used to predict the same data. It applies machine learning 
algorithms under a gradient boosting methodology. XGBoost provides a parallel tree 
boosting that is able to rapidly and precisely resolve various data problems [31]. “It can 
be used to solve regression, classification, ranking, and user-defined prediction problems” 
[32]. Finally, acquired predictions were compared based on R2 and root mean square error 
(RMSE), and conclusions were drawn. R2 is the coefficient of determination and it gives 
information about the model’s goodness of fit [33]: 

𝑅 = 1 − ∑ 𝐿𝐷 − 𝐿𝐷∑(𝐿𝐷 − 𝐿𝐷)  (8)

where ∑ 𝐿𝐷 − 𝐿𝐷  is the sum of residuals and ∑(𝐿𝐷 − 𝐿𝐷) is the sum of the distances 
at which the data occur away from the mean. 𝐿𝐷  is the predicted LD value while 𝐿𝐷 is 
the mean of LD values. RMSE measures distance between predicted and actual values and 
indicates the absolute fit of the model to the data [34]: 

𝑅𝑀𝑆𝐸 = 1𝑁 (𝐿𝐷 − 𝐿𝐷 )  (9)

where N is the number of values. 

4. Results and Discussion 
Multiple linear regression (MLR) was performed using the Python “statsmodels” 

package. This study aimed to predict oil tanker lightship displacement using two dimen-
sions—LOA and B. However, since all oil tanker groups were included in the regression, 
the tanker group was introduced as an additional (dummy) variable to improve LD pre-
diction results. Therefore, the Python get_dummies() function was used to convert categor-
ical variables (oil tanker groups) into indicator (dummy) variables. This coding enables 
the usage of categorical variables in different machine learning prediction models. 
Dummy coding in Python uses only two values (one and zero) to deliver all needed infor-
mation on group membership [35]. It is important to emphasise that, in order to reduce 
the correlations between the dummy variables, the function drop_first = True was used. 
This function assists in reducing the extra column created during dummy variable crea-
tion. In this particular case, the Aframax group of oil tankers was removed since it was, 
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according to its dimensions, just between other tanker groups. In simple terms, if the 
tanker group is not coded as Handy, Panamax, Suezmax, or VLCC, then it is an Aframax 
tanker. Multiple linear regression results are presented in Table 3. 

Table 3. Results of multiple linear regression with six independent variables. 

 Coef. (β) Std. Err. t Value p >|t|  
const −4364.13 2442.18 −1.79 0.078 R2: 0.991 
LOA 47.85 12.07 3.96 0.000 Adjusted R2: 0.990 

B 253.55 76.84 3.30 0.001 F-statistic: 1318.0 
Handy −2585.83 1411.42 −1.83 0.071  

Panamax −2224.17 806.05 −2.76 0.007  
Suezmax 3331.72 606.19 5.49 0.000  

VLCC 17310 1071.89 16.15 0.000  

As shown in Table 3, the adjusted R2 is 0.99, and the p-value for the coefficients LOA 
and B is <0.05. Thus, a multiple regression model was adopted, including one dependent 
variable (LD) and two independent variables (LOA and B) in the case of the Aframax oil 
tanker group (6). It can be said that the model successfully explains 99.0% of the variance 
in the data and has statistical significance. From the results of multiple linear regression 
(Table 3), Equation (10) can be used for estimating the lightship displacement of Aframax 
oil tanker ships: 𝐿𝐷 (𝐴𝑓𝑟𝑎𝑚𝑎𝑥) = 47.85 𝐿𝑂𝐴 +  253.55 𝐵 − 4364.13 (10)

In order to estimate other tanker groups’ lightship displacement, Equations (11)–(14) 
apply: 𝐿𝐷 (𝐻𝑎𝑛𝑑𝑦) = 47.85 𝐿𝑂𝐴 +  253.55 𝐵 − 6949.96 (11)𝐿𝐷 (𝑃𝑎𝑛𝑎𝑚𝑎𝑥) = 47.85 𝐿𝑂𝐴 +  253.55 𝐵 − 6588.3 (12)𝐿𝐷 (𝑆𝑢𝑒𝑧𝑚𝑎𝑥) = 47.85 𝐿𝑂𝐴 +  253.55 𝐵 − 1032.41 (13)𝐿𝐷 (𝑉𝐿𝐶𝐶) = 47.85 𝐿𝑂𝐴 +  253.55 𝐵 + 12945.87 (14)

Additionally, it must be noted that the constant’s standard deviation is 2442.18 (Table 
3). The average differences in tons and percentages (and absolute values) for each tanker 
group, identified via MLR, are presented in Table 4. 

Table 4. Average differences between MLR-predicted and actual LD values. 

Tanker Group Handy-Sized Panamax Aframax Suezmax VLCC 
RMSE 621.00 989.97 1070.11 1925.65 2035.16 

Average diff. (%) 3.5 −1.5 −0.4 −0.6 −0.2 

As presented in Table 4, the most considerable average difference in percentage is for 
the Handy-sized group of tankers. However, as VLCC tankers are the group with the larg-
est size, for the tanker with an LD of 47,818 t, the difference of 0.2% is 95.6 t, and for the 
Handy-sized tanker with an LD of 3008.13 t, the difference of 3.5% is 105.3 t. From these 
examples, it can be concluded that the difference is relatively small when converted in 
tons as a result of large differences in lightship displacement. 

A Studentized Breusch–Pagan test (bptest) was performed in the statistical software 
Python to test the model for heteroskedasticity. If a p-value is less significant than 0.05, it 
indicates that the null hypothesis can be rejected (the variance does not change in the re-
sidual—homoskedasticity), and, therefore, heteroskedasticity exists. Another important 
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assumption in multiple linear regression is autocorrelation, meaning there is no correla-
tion between residuals (they are independent of each other). The Durbin–Watson (DW) 
statistical test was performed to check for autocorrelation. If there is no autocorrelation, 
the DW statistic value is between 1.5 and 2.5 (rule of thumb), and the p-value is above 0.05. 
The results of both tests are shown in Table 5. 

Table 5. Results of heteroskedasticity and autocorrelation of the model. 

Studentized Breusch–Pagan Test 
BP = 3.619 p-value = 0.005 

Durbin–Watson test 
DW = 1.347 

From the results of the tests, as presented in Table 5, it can be concluded that the 
obtained model shows features of heteroskedasticity and autocorrelation. However, as 
stated in [36], “heteroskedasticity has never been a reason to throw out an otherwise good 
model.” Therefore, the authors believe the model could be a valuable predictive tool and 
usable in practice. Furthermore, their research aimed to use another tool that could be 
used for the prediction of LD using two known dimensions and comparing obtained val-
ues. 

One such tool might be the extreme gradient boosting machine learning method fo-
cusing on predictive accuracy. A graphical representation of the relation between the var-
iables is given in Figure 4. 

 
Figure 4. Relations between variables. 
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The correlation matrix of the variables is presented in Figure 5. 

 
Figure 5. Variable correlation matrix. 

The correlation matrix (Figure 4) shows that the correlation between LOA and B is 
0.99, between LOA and LD is 0.95, and between B and LD is 0.95. Thus, it can be concluded 
that both LOA and B will have a high predictive power on the LD. Additionally, as pre-
sented in Figure 4, the ratio of LD and variables LOA and B seems more polynomial than 
linear. This feature might create minor problems for linear models such as regression. 
However, XGBoost copes well with nonlinearity, even without adjustments, preventing 
overfitting [37]. Data were applied to the XGBoost ML method, and descriptive statistical 
results are presented in Table 6. 

Table 6. Descriptive statistics of the variables. 

 Count Mean Std Min 25% 50% 75% Max 
LOA 80 195.03 75.33 83.4 124.49 182.55 249.87 336.17 

B 80 32.54 14.34 13.0 19.65 31.6 44.0 60.04 
LD 80 13833.28 12557.47 1133.0 3722.72 9038.0 19564.3 47818.0 

XGBoost machine learning resulted in R2 = 0.990 and RMSE = 1211.99. Like in MLR, 
LOA and B have high predictive power; however, B has greater significance according to 
XGBoost (Figure 6). 

 
Figure 6. Importance of independent variables (LOA and B). 

The data set was divided into a training set (85%) and a test set (15%) to evaluate the 
XGBoost performance. The algorithm was trained on the first set, and the second set was 
used to compare predicted values with actual ones. The disadvantage of this evaluation 
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tool is that it can have a high variance, meaning that training and test set data differences 
might result in significant differences when estimating the model’s accuracy. Neverthe-
less, as shown in Figure 7, the predicted LD fits well with the original LD. Even though 
the differences between predicted and original values are minor (Figure 7), the model 
needs further evaluation. 

 
Figure 7. Differences between predicted and original LD values. 

Another tool for estimating the accuracy of the model is cross validation (CV). It is a 
tool that can be used to estimate the performance of an ML algorithm with less variance 
than can be achieved by dividing the dataset into training and test sets. It works by divid-
ing the dataset into k parts (for example, k = 3, k = 5, or k = 10). Each data split is called a 
fold. The ML algorithm is trained on k-1 folds with one held back and tested on the held 
back fold. This procedure is repeated so that each fold of the dataset is given a chance to 
act as the held-back test set. Cross validation results in k different performance scores that 
can be summarised using a mean and a standard deviation. In this research, the dataset 
was divided into 10 parts (k = 10). The mean k-fold cross validation R2 score was 0.97, 
meaning that the obtained model can explain 97% of the variance. It is important to men-
tion that the standard deviation obtained for the CV R2 score was 0.04. The mean CV 
RMSE score was 1018.77, with a standard deviation of 257.35. Results of the CV test on a 
random sample are presented in Table 7. 

Table 7. Predicted and original LD differences (random sample). 

No. Predicted LD Original LD Difference (t) Difference (%) 
1 2753.8 2752.0 1.8 0.07 
2 6139.7 6135.0 4.7 0.08 
3 3414.8 3415.0 −0.2 0.00 
4 41261.1 41261.0 0.1 0.00 
5 40904.2 43308.0 2403.8 5.55 
6 17648.5 17642.6 5.9 0.03 
7 10813.9 10821.4 −7.5 0.07 
8 19996.8 19993.0 3.8 0.02 
9 4158.9 4154.8 4.1 0.10 

10 3126.3 3125.8 0.5 0.02 

As shown in Table 7, nine rows have minimal differences between predicted and 
original LD (1–4 and 6–10), but the fifth row has a significant difference, notwithstanding 
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the generally good results that were obtained. This probably occurred as a result of occa-
sions wherein the data set contained two or more ships with very similar LOA and B val-
ues, but there was a difference between LD values. The differences could be due to various 
reasons, such as ice-class ships, ships with a higher superstructure, various additional 
equipment installed (e.g., a water ballast treatment system), or other additional structures, 
machinery, or equipment added for specific trading areas. In addition, a reason for the LD 
difference between tankers of the same dimensions could be that one was built with a 
certain percentage more steel than the minimum class requirements in order to strengthen 
the ship structure, extending the ship’s life. Average cross-validation differences in tons 
and percentages for each tanker group are presented in Table 8. 

Table 8. Average CV differences for tanker groups. 

Tanker Group Handy-Sized Panamax Aframax Suezmax VLCC 
RMSE 405.00 348.94 82.56 521.34 961.00 

Average diff. (%) −1.38 −0.72 −0.13 −0.23 1.07 

As presented in Table 8, the Handy-sized group exhibited the most considerable dif-
ferences, followed by the VLCC group. The most negligible differences between original 
and predicted LD values were obtained for the Aframax and Suezmax groups. 

Results obtained using the XGBoost ML method showed that the model explains 
99.0% of the variance, but, when evaluation using k-fold cross validation was performed, 
the obtained R2 mean score was 0.97. Thus, it is shown that ML, especially the XGBoost 
method, can be applied in the shipping industry to this particular example for predicting 
the lightship displacement weight of oil tanker ships, using only two known variables, 
LOA and B, and by introducing tanker group (by size). 

The results of the regression performance measurement show that, in this case, mul-
tiple linear regression together with the XGBoost regressor have high predictive power. 
For example, in this research, the linear regression value of R2 is 0.990 compared to the 
XGBoost R2 value of 0.990 (CV R2 = 0.97), and the RMSE is 1193.41 compared to 1211.99 
(CV RMSE = 1018.77), respectively, as presented in Table 9. 

Table 9. Comparison of R2 and RMSE obtained. 

 MLR XGBoost ML (CV) 
RMSE 1193.41 1018.77 

R2 0.990 0.970 

In addition, a comparison of the results for different tanker size groups are presented 
in Table 10. As can be concluded from Table 10, the worst fitting was obtained for Handy 
–sized and VLCC tankers. Furthermore, it needs to be stressed that results utilising 
XGBoost were better when compared to MLR. 

Table 10. Comparison of results obtained utilising MLR and XGBoost by tanker size groups. 

Tanker Size Group Handy Panamax Aframax Suezmax VLCC 
MLR RMSE 621.00 989.97 1070.11 1925.65 2035.16 

MLR av. diff. (%) 3.5 −1.5 −0.4 −0.6 −0.2 
XGBoost RMSE 405.00 348.94 82.56 521.34 961.00 

XGBoost av. diff. (%) −1.38 −0.72 −0.13 −0.23 1.07 

The XGBoost ML method has shown its usability for predicting the lightship dis-
placement of oil tankers and, together with the MLR, confirmed another possible applica-
tion in the maritime industry. Lightship displacement tonnage is valuable information for 
numerous stakeholders, and, because of its seldom being readily available, a method for 
its estimation has been developed. Furthermore, there might be considerable differences 
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in LD as a result of different equipment or machinery weights or even more superstruc-
ture decks on ships with the same LOA and B. However, the model obtained in this re-
search estimates LD rather accurately, which was confirmed by R2 and RMSE. Moreover, 
cross validation confirmed its high predictive power, and the model can be used for LD 
estimation in practice. 

It is also worth mentioning that about 85% of a ship’s weight (LD) is reusable steel, 
making oil tankers and bulk carriers highly desirable ships for recycling as a result of their 
high steel content [22]. Furthermore, from an economic point of view, according to data 
from 2021, the average price offered for scrap steel was around USD 450 per lightship 
displacement ton (Indian subcontinent) [38]. Therefore, if the LD estimation error were 
transmuted to US dollars, an estimation error of 100 tons is worth USD 45,000, which is a 
relatively expensive error. However, in terms of LD percentage, an estimation error of 100 
tons for an average Aframax crude oil tanker is 0.6% of the total LD. 

5. Conclusions 
This paper shows that the lightship displacement of tanker ships can be estimated 

using two ship dimensions, length overall (LOA) and breadth (B). Furthermore, multiple 
linear regression is a valuable tool that can accurately predict dependent variables based 
on independent variables. In this research, the authors introduced additional dummy var-
iables (tanker group according to size) to predict lightship displacement using multiple 
linear regression. The XGBoost machine learning method was introduced to compare the 
lightship displacement tonnage prediction. The novelty of this research is introducing the 
XGBoost machine learning method to estimate lightship displacement data, which 
showed its advantages and confirmed its usability in the shipping industry. 

However, it should be mentioned that the study also takes into consideration some 
limitations. Firstly, it can be argued that our collected data sample is relatively small. This 
is connected to the fact that some data regarding the same-sized group of tankers were 
duplicated (sister ships). After discarding duplicate data, 80 oil tankers were used to build 
a model for predicting existing tankers’ lightship displacement. Nevertheless, in addition 
to two independent variables (LOA and B), dummy variables (tanker groups) were intro-
duced in this study, enabling more precise lightship displacement predictions. Therefore, 
it is recommended that more data should be collected to predict required oil tanker di-
mensions more accurately in future research. Secondly, it must be emphasised that ma-
chine learning, in general, is poor at generalising to examples outside the scope of the 
training set. Tree-based algorithms (XGBoost) are inferior for large extrapolations. This 
model predicts well LD values between a minimum LOA of 83.4 m and a maximum LOA 
of 336.17 m and between a minimum B of 13.0 m and a maximum B of 60 m. Having said 
that, the developed model is applicable to the shipping industry, covering the majority of 
tanker size groups, but could be inaccurate for the design of new tanker ships and can be 
used to estimate the lightship displacement of existing tankers within the abovemen-
tioned LOA and B ranges. 

The results of this research might be used by maritime shipping stakeholders seeking 
to estimate the lightship displacement of a tanker ship, and the results will be satisfactory. 
The authors’ opinion is that further research on the use of tanker ships’ length overall and 
breadth for estimating lightship displacement that employs the multiple linear regression 
and XGBoost ML methods, has large sample sizes, and classifies tankers according to their 
size will generate more accurate predictions and facilitate the estimation of tankers’ light-
ship displacement. Therefore, in future research, only one oil tanker category size will be 
sampled (for example, Aframax-sized oil tankers). Moreover, introducing additional var-
iables, such as the draft of a tanker and its year and country of building, might provide 
additional insights into estimating lightship displacement. It should be emphasised that 
the authors focused on oil tankers in this paper, but the same procedure can be utilised to 
predict lightship displacement for other ship types. 
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Appendix A 

Table A1. Dimensions and size classes of tankers used in the study. 

No. 
Tanker 
Group LOA (m) B (m) LD (t) No. 

Tanker 
Group LOA (m) B (m) LD (t) 

1 Handy 83.40 13.00 1133.00 41 Panamax 182.55 27.40 8699.00 
2 Handy 88.80 14.80 1748.70 42 Panamax 183.00 32.20 10,821.40 
3 Handy 90.00 15.20 1840.57 43 Panamax 183.17 32.24 10,200.00 
4 Handy 92.35 15.20 3008.13 44 Panamax 184.32 27.40 8123.00 
5 Handy 95.80 15.20 1810.90 45 Panamax 184.33 27.44 8966.00 
6 Handy 99.60 18.00 2817.00 46 Panamax 185.93 32.23 10,249.00 
7 Handy 102.21 15.50 2373.00 47 Panamax 228.17 32.20 12,198.00 
8 Handy 102.70 17.80 2592.87 48 Panamax 228.40 38.03 16,045.60 
9 Handy 103.60 16.60 2940.00 49 Panamax 228.60 32.26 13,421.35 

10 Handy 105.29 15.20 2217.00 50 Panamax 228.60 32.35 15,238.90 
11 Handy 106.20 15.60 2462.00 51 Aframax 228.60 42.00 16,871.20 
12 Handy 113.08 15.70 2500.00 52 Aframax 228.60 42.04 16,075.00 
13 Handy 114.87 16.00 3230.00 53 Aframax 240.99 42.00 16,639.00 
14 Handy 115.00 17.60 2464.80 54 Aframax 243.00 42.00 18,295.00 
15 Handy 115.50 18.70 3125.83 55 Aframax 243.80 42.04 18,637.00 
16 Handy 116.50 20.00 3704.53 56 Aframax 243.96 42.00 16,915.00 
17 Handy 118.87 13.00 1607.00 57 Aframax 244.15 42.00 18,498.00 
18 Handy 119.10 16.90 2826.70 58 Aframax 248.96 43.80 17,642.60 
19 Handy 120.00 20.43 3748.20 59 Aframax 249.00 44.00 17,771.90 
20 Handy 121.40 19.20 3728.79 60 Aframax 249.85 44.06 20,200.00 
21 Handy 125.53 19.80 3802.50 61 Aframax 249.96 44.00 20,924.00 
22 Handy 128.60 20.40 4403.00 62 Aframax 253.59 44.03 19,421.40 
23 Handy 134.16 20.52 4272.00 63 Suezmax 269.17 46.04 24,742.90 
24 Handy 134.30 21.20 4154.80 64 Suezmax 270.45 44.60 24,531.00 
25 Handy 134.85 22.00 4248.60 65 Suezmax 273.70 48.04 25,939.60 
26 Handy 139.90 16.70 2752.00 66 Suezmax 274.00 48.04 23,414.00 
27 Handy 145.53 23.73 5375.01 67 Suezmax 274.18 50.00 23,978.00 
28 Handy 147.83 24.23 5562.00 68 Suezmax 274.20 48.00 22,616.00 
29 Handy 148.43 23.00 6580.00 69 Suezmax 274.22 48.00 24,788.00 
30 Handy 149.35 17.30 3415.00 70 Suezmax 274.50 48.00 25,941.40 
31 Handy 149.93 24.60 6135.00 71 Suezmax 277.08 48.00 25,900.00 
32 Handy 161.12 23.25 6671.00 72 Suezmax 281.20 48.20 19,993.00 
33 Panamax 170.17 26.63 8881.20 73 VLCC 329.88 60.00 41,789.30 
34 Panamax 175.90 31.00 8937.00 74 VLCC 332.00 58.00 42,173.00 



J. Mar. Sci. Eng. 2023, 11, 961 16 of 17 
 

 

35 Panamax 175.93 31.00 8871.00 75 VLCC 332.95 58.00 43,308.00 
36 Panamax 179.88 32.23 9110.00 76 VLCC 333.00 60.00 42,749.80 
37 Panamax 179.96 32.20 9710.00 77 VLCC 333.00 60.05 44,900.00 
38 Panamax 181.78 27.42 8311.00 78 VLCC 333.40 56.50 41,261.00 
39 Panamax 182.50 32.20 9981.00 79 VLCC 336.00 60.00 46,974.00 
40 Panamax 182.55 27.34 8942.00 80 VLCC 336.17 60.00 47,818.00 
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