Pregled bibliografske jedinice broj: 1267399
Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach
Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach // Sensors, 23 (2023), 8; 4148, 24 doi:10.3390/s23084148 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1267399 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sparse Time-Frequency Distribution Reconstruction
Using the Adaptive Compressed Sensed Area
Optimized with the Multi-Objective Approach
Autori
Jurdana, Vedran ; Lopac, Nikola ; Vrankić, Miroslav
Izvornik
Sensors (1424-8220) 23
(2023), 8;
4148, 24
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
time-frequency distribution ; sparse signal reconstruction ; compressive sensing ; Rényi entropy ; multi-objective meta-heuristic optimization
Sažetak
Compressive sensing (CS) of the signal ambiguity function (AF) and enforcing the sparsity constraint on the resulting signal time-frequency distribution (TFD) has been shown to be an efficient method for time-frequency signal processing. This paper proposes a method for adaptive CS-AF area selection, which extracts the magnitude-significant AF samples through a clustering approach using the density-based spatial clustering algorithm. Moreover, an appropriate criterion for the performance of the method is formalized, i.e., component concentration and preservation, as well as interference suppression, are measured utilizing the information obtained from the short-term and the narrow-band Rényi entropies, while component connectivity is evaluated using the number of regions with continuously-connected samples. The CS-AF area selection and reconstruction algorithm parameters are optimized using an automatic multi- objective meta-heuristic optimization method, minimizing the here-proposed combination of measures as objective functions. Consistent improvement in CS-AF area selection and TFD reconstruction performance has been achieved without requiring a priori knowledge of the input signal for multiple reconstruction algorithms. This was demonstrated for both noisy synthetic and real-life signals.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
VLASTITA-SREDSTVA-uniri-tehnic-17 - Računalom potpomognuta digitalna analiza i klasifikacija signala (UNIRI-TEHNIC-18-17) (Lerga, Jonatan, VLASTITA-SREDSTVA - UNIRI2018) ( CroRIS)
--uniri-mladi-tehnic-22-16 - Analiza i klasifikacija nestacionarnih signala korištenjem naprednih metoda dubokoga učenja (Lopac, Nikola) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Pomorski fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE
Uključenost u ostale bibliografske baze podataka::
- INSPEC