Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1267399

Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach


Jurdana, Vedran; Lopac, Nikola; Vrankić, Miroslav
Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach // Sensors, 23 (2023), 8; 4148, 24 doi:10.3390/s23084148 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1267399 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach

Autori
Jurdana, Vedran ; Lopac, Nikola ; Vrankić, Miroslav

Izvornik
Sensors (1424-8220) 23 (2023), 8; 4148, 24

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
time-frequency distribution ; sparse signal reconstruction ; compressive sensing ; Rényi entropy ; multi-objective meta-heuristic optimization

Sažetak
Compressive sensing (CS) of the signal ambiguity function (AF) and enforcing the sparsity constraint on the resulting signal time-frequency distribution (TFD) has been shown to be an efficient method for time-frequency signal processing. This paper proposes a method for adaptive CS-AF area selection, which extracts the magnitude-significant AF samples through a clustering approach using the density-based spatial clustering algorithm. Moreover, an appropriate criterion for the performance of the method is formalized, i.e., component concentration and preservation, as well as interference suppression, are measured utilizing the information obtained from the short-term and the narrow-band Rényi entropies, while component connectivity is evaluated using the number of regions with continuously-connected samples. The CS-AF area selection and reconstruction algorithm parameters are optimized using an automatic multi- objective meta-heuristic optimization method, minimizing the here-proposed combination of measures as objective functions. Consistent improvement in CS-AF area selection and TFD reconstruction performance has been achieved without requiring a priori knowledge of the input signal for multiple reconstruction algorithms. This was demonstrated for both noisy synthetic and real-life signals.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
VLASTITA-SREDSTVA-uniri-tehnic-17 - Računalom potpomognuta digitalna analiza i klasifikacija signala (UNIRI-TEHNIC-18-17) (Lerga, Jonatan, VLASTITA-SREDSTVA - UNIRI2018) ( CroRIS)
--uniri-mladi-tehnic-22-16 - Analiza i klasifikacija nestacionarnih signala korištenjem naprednih metoda dubokoga učenja (Lopac, Nikola) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Pomorski fakultet, Rijeka

Profili:

Avatar Url Miroslav Vrankić (autor)

Avatar Url Nikola Lopac (autor)

Avatar Url Vedran Jurdana (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Jurdana, Vedran; Lopac, Nikola; Vrankić, Miroslav
Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach // Sensors, 23 (2023), 8; 4148, 24 doi:10.3390/s23084148 (međunarodna recenzija, članak, znanstveni)
Jurdana, V., Lopac, N. & Vrankić, M. (2023) Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach. Sensors, 23 (8), 4148, 24 doi:10.3390/s23084148.
@article{article, author = {Jurdana, Vedran and Lopac, Nikola and Vranki\'{c}, Miroslav}, year = {2023}, pages = {24}, DOI = {10.3390/s23084148}, chapter = {4148}, keywords = {time-frequency distribution, sparse signal reconstruction, compressive sensing, R\'{e}nyi entropy, multi-objective meta-heuristic optimization}, journal = {Sensors}, doi = {10.3390/s23084148}, volume = {23}, number = {8}, issn = {1424-8220}, title = {Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach}, keyword = {time-frequency distribution, sparse signal reconstruction, compressive sensing, R\'{e}nyi entropy, multi-objective meta-heuristic optimization}, chapternumber = {4148} }
@article{article, author = {Jurdana, Vedran and Lopac, Nikola and Vranki\'{c}, Miroslav}, year = {2023}, pages = {24}, DOI = {10.3390/s23084148}, chapter = {4148}, keywords = {time-frequency distribution, sparse signal reconstruction, compressive sensing, R\'{e}nyi entropy, multi-objective meta-heuristic optimization}, journal = {Sensors}, doi = {10.3390/s23084148}, volume = {23}, number = {8}, issn = {1424-8220}, title = {Sparse Time-Frequency Distribution Reconstruction Using the Adaptive Compressed Sensed Area Optimized with the Multi-Objective Approach}, keyword = {time-frequency distribution, sparse signal reconstruction, compressive sensing, R\'{e}nyi entropy, multi-objective meta-heuristic optimization}, chapternumber = {4148} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font