Pregled bibliografske jedinice broj: 1265831
Deep learning model of nanopore sequencing pore
Deep learning model of nanopore sequencing pore, 2021., diplomski rad, diplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 1265831 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep learning model of nanopore sequencing pore
Autori
Penić, Rafael Josip
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
01.07
Godina
2021
Stranica
42
Mentor
Šikić, Mile
Neposredni voditelj
Stanojević, Dominik
Ključne riječi
bioinformatics, self-supervised learning, sequencing, nanopore, DNA, deep learning, machine learning
Sažetak
Nanopore sequencing is one of the most modern sequencing technologies and in this thesis we explored how do the self-supervised methods affect models that work with nanopore readings. We tried out contrastive predictive coding method with which we tried to predict signal’s future latent representations. Sadly, this approach did not improve model’s performance on the downstream task. We achieved best results with self-supervised representation learning methods which are very popular in the field of computer vision. Signal augmentations have a very important role in these algorithms and it is very important to think of good augmentations that will help model learn high-quality signal representations.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-5886 - De novo sastavljanje genoma i metagenoma (SIGMA) (Šikić, Mile, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb