Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1265668

Unexploded Ordnance Detection on UAV Thermal Images by using YOLOv7


Bajić, Milan; Potočnik, Božidar
Unexploded Ordnance Detection on UAV Thermal Images by using YOLOv7 // ROSUS 2023 - Računalniška obdelava slik in njena uporaba v Sloveniji 2023: Zbornik 17. strokovne konference
Maribor, Slovenija: Univerzitetna založba Univerze v Mariboru, 2023. str. 128-142 doi:10.18690/um.feri.4.2023.12 (predavanje, podatak o recenziji nije dostupan, cjeloviti rad (in extenso), stručni)


CROSBI ID: 1265668 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Unexploded Ordnance Detection on UAV Thermal Images by using YOLOv7

Autori
Bajić, Milan ; Potočnik, Božidar

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), stručni

Skup
ROSUS 2023 - Računalniška obdelava slik in njena uporaba v Sloveniji 2023: Zbornik 17. strokovne konference

Mjesto i datum
Maribor, Slovenija, 23.03.2023

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Podatak o recenziji nije dostupan

Ključne riječi
unmanned aerial vehicle ; unexploded ordnance ; thermal imaging ; UXOTi_NPA dataset ; convolutional neural networks ; deep learning ; YOLO

Sažetak
A few promising solutions for thermal imaging Unexploded Ordnance (UXO) detection were proposed after the start of the military conflict in Ukraine in 2014. Our research focuses on improving the accuracy of UXO detection in thermal images. The current state-of-the-art UXO detection method is based on the YOLOv5 Convolutional Neural Network (CNN). We accessed the effectiveness of UXO detection by using the state-of-the-art object detector YOLOv7 in this article. Two YOLOv7 models were re-implemented, fine-tuned using a grid-search approach and trained on a UXOTi_NPA public dataset of 720x480 pixel thermal images. The results showed that the models were able to identify UXOs from 11 different classes with more than 90% probability and a Mean Average Precision (mAP) of 86.8% to 89.7%, depending on the model's complexity. The metrics are just slightly behind the YOLOv5 results. Such CNN, thus, enables accurate automatic UXO detection, which is crucial to address one of the least explored and life-threatening problems worldwide.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Tehničko veleučilište u Zagrebu

Profili:

Avatar Url Milan Bajić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi

Citiraj ovu publikaciju:

Bajić, Milan; Potočnik, Božidar
Unexploded Ordnance Detection on UAV Thermal Images by using YOLOv7 // ROSUS 2023 - Računalniška obdelava slik in njena uporaba v Sloveniji 2023: Zbornik 17. strokovne konference
Maribor, Slovenija: Univerzitetna založba Univerze v Mariboru, 2023. str. 128-142 doi:10.18690/um.feri.4.2023.12 (predavanje, podatak o recenziji nije dostupan, cjeloviti rad (in extenso), stručni)
Bajić, M. & Potočnik, B. (2023) Unexploded Ordnance Detection on UAV Thermal Images by using YOLOv7. U: ROSUS 2023 - Računalniška obdelava slik in njena uporaba v Sloveniji 2023: Zbornik 17. strokovne konference doi:10.18690/um.feri.4.2023.12.
@article{article, author = {Baji\'{c}, Milan and Poto\v{c}nik, Bo\v{z}idar}, year = {2023}, pages = {128-142}, DOI = {10.18690/um.feri.4.2023.12}, keywords = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning, YOLO}, doi = {10.18690/um.feri.4.2023.12}, title = {Unexploded Ordnance Detection on UAV Thermal Images by using YOLOv7}, keyword = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning, YOLO}, publisher = {Univerzitetna zalo\v{z}ba Univerze v Mariboru}, publisherplace = {Maribor, Slovenija} }
@article{article, author = {Baji\'{c}, Milan and Poto\v{c}nik, Bo\v{z}idar}, year = {2023}, pages = {128-142}, DOI = {10.18690/um.feri.4.2023.12}, keywords = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning, YOLO}, doi = {10.18690/um.feri.4.2023.12}, title = {Unexploded Ordnance Detection on UAV Thermal Images by using YOLOv7}, keyword = {unmanned aerial vehicle, unexploded ordnance, thermal imaging, UXOTi\_NPA dataset, convolutional neural networks, deep learning, YOLO}, publisher = {Univerzitetna zalo\v{z}ba Univerze v Mariboru}, publisherplace = {Maribor, Slovenija} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font