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ARTICLE INFO ABSTRACT

Dataset link: http://bit.ly/shal dataset In this paper, we introduce a new large-scale publicly available color constancy dataset which we are calling
the Shadows & Lumination dataset. The dataset contains 2500 minimally processed images from various
indoor, outdoor, and night-time scenes. This dataset is GDPR-compliant, as we masked out all sensitive private
information from the images. Unlike most other color constancy datasets, our dataset contains real-world
images with two illuminants is appropriate for multi-illuminant estimation. In addition to the illumination,
we provide a binary segmentation mask for each image. In the segmentation mask, we divide the image into
two regions, where each region is illuminated by only one of the illuminants. We give an explanation of
the methodology used to create the dataset. For dataset creation, we used five cameras: Canon 5D, Canon
550D, Sony 300, Panasonic FZ1000, and the Motorola one fusion+ mobile camera. Finally, we tested several
state-of-the-art illumination estimation and image segmentation models on our dataset. The dataset is publicly
available!. This paper also benchmarks several illumination estimation methods as well as several image
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segmentation methods on our dataset.

1. Introduction

Light source chromaticity has a noticeable influence on the color
of an object illuminated by a light source. A crucial feature of an
object is its color and the human visual system (HVS) developed the
ability to perceive the intrinsic color of an object even when that scene
illumination alters its color (Fairchild, 2013). The intrinsic color of
an object is present when the object is illuminated by the canonical
illuminant, which is usually a perfectly white light.

The fact that an object’s color changes depending on what light
source illuminates it presents a significant problem for many computer
vision tasks (Wang et al., 2019). The object’s color is an essential
feature, and computer vision tasks such as object detection and object
tracking assume that a red apple will be red no matter the illumination.
The process of removing the illumination chromaticity in an image
is also called computational color constancy. Many different methods
exist to solve this problem, from simple approaches (Van De Weijer
et al., 2007) that use image statistics to complex (Hu et al., 2017) ones
that employ neural networks.

Methods based on convolutional neural networks (CNN) achieve the
best results (Xiao et al., 2020). Neural networks need a diverse set
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of samples to produce accurate results. Datasets (Cheng et al., 2014;
Laakom et al., 2021) with many images do exist, but these datasets
contain images with only one uniform illuminant. Consequentially,
methods trained on these datasets assume that a scene is illuminated
by one uniform illuminant, which is not always accurate. An example
of an image with two illuminants is an outdoor daytime image where a
part of the scene is in the shadows. In such a situation, one illuminant
is the sun, and the other is the sky in the regions which the sun does
not reach. There are datasets with images that contain more than one
illuminant (Beigpour et al., 2013; Bleier et al., 2011; Gijsenij, Lu et al.,
2011), but these datasets usually lack variety and contain only a small
number of images.

In this paper, we introduce a large-scale multi-illuminant dataset
that contains 2500 images with two illuminants. For each image, we
provide a file containing the extracted illuminants and a segmentation
mask file. The segmentation mask divides the image into two regions,
and each region is illuminated by only one illuminant. The dataset
contains images of real-world scenes. In the dataset, there are a variety
of daytime, night-time, indoor, and outdoor scenes. Images in the
dataset are processed to be GDPR-compliant, as all sensitive private
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information in each image is masked out. The dataset was created
using five different cameras, four professional cameras, and a mobile
phone camera. This dataset is a continuation of the research done in a
previously published paper (Domislovi¢ et al., 2021).

This paper consists of the following sections. Section 2 provides
a formal definition of the problem. Section 3 is an overview of the
currently available single and multi-illuminant datasets. Section 4 gives
an overview of the dataset and insight into how images were collected
and labeled, as well as the structure of the dataset. Section 5 aims to
explain how the dataset should be used for the purposes of method
evaluation. Section 6 presents the results obtained using existing illumi-
nation estimation and image segmentation methods. Section 7 provides
the conclusion of the paper.

2. Color constancy overview

The Human Visual System is very adaptable, as we can perceive
an object’s intrinsic color even when the color is altered by the scene
illumination, whereas computers need to perform white-balancing to
remove the effect of the illuminant on an object’s color. The process
of white-balancing can be divided into two steps, the first step being
the estimation of the image illumination image scene, and the second
step being the chromatic adaptation of the image using the estimated
illumination.

2.1. Problem formulation

An image is made out of pixels, where each pixel has three chan-
nels that represent the red, green, and blue intensity of the pixel
f = (f,.f. fp). An image formation can be represented using the
Lambertian model (Gijsenij, Gevers et al., 2011).

fo= / I(A)S(x, A)p (1) dA (€))

Pixel RGB intensities depend on illumination color 7(4), surface re-
flectance S(x, 4) and the camera sensitivity function p(4) = (p,(4), ps(4),
py(4)) of the three channels, where ¢ = {r, b, g}, w represents the visible
spectre, x the spatial coordinates, and 4 the light wavelength.

The second step, chromatic adaptation, is usually performed using
the von Kries model (von Kries, 1905). This model assumes that the
red, green, and blue sensor responses are independent, and is repre-
sented using a diagonal matrix. It was shown that a diagonal matrix is
sufficient for chromatic adaptation (Finlayson et al., 1993).

19 = A% % I @

I¢ is the image taken under the canonical illuminant, A" represents
the von Kries diagonal matrix, and I* is the image taken under an
unknown illuminant. The diagonal matrix can be expressed as:

Ly/Le 0 0
A= 0 L/ 0 3
0 0 Ly

where LY, L;, L} are the red, green, and blue values of the unknown
illuminant and L¢, Lg , Ly are the red, green, and blue values of the
canonical illuminant. The canonical illuminant is the white light with
a L¢ value of (1,1, 1)T.

This process is used when an image has only one illuminant and
is not easy to execute when multiple illuminants are present in the
image. The illumination of each pixel is needed to perform the von
Kries (1905) chromatic image adaptation. For this reason, the images in
our dataset have been taken so that the illumination is uniform in each
illuminant region, with a clearly defined border between illumination
regions.
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3. Previously published color constancy datasets

One of the oldest still widely used single illuminant datasets is
the ColorChecker (Gehler et al., 2008) dataset introduced in 2008.
This dataset contains over 500 images created using two cameras and
the illumination was extracted using the Macbeth ColorChecker which
has gray, white, and chromatic surfaces used to extract scene illumi-
nation. The dataset has both indoor and outdoor images. Improper
illumination extraction and confusing wording on image black-level
subtraction in Gehler et al. (2008) resulted in three different sets of
illumination ground truths (Finlayson et al., 2017). The existence of
three ground truths also causes problems when comparing methods
since it was shown in Finlayson et al. (2017) that the used ground truth
can significantly affect method accuracy.

Another older single illuminant dataset is the NUS-8 (Cheng et al.,
2014) dataset. It contains over 1800 images taken by 9 cameras. The
ColorChecker was also used to extract the illumination of the images
in the dataset. Around 210 images were taken using each camera.
The dataset contains both indoor and outdoor images and involves the
largest number of cameras out of any existing dataset. However, the
problem with this dataset is that it does not contain over 1800 unique
images. Instead, it contains only around 210 different scenes. Each
scene was captured by multiple cameras. This dataset is often used to
see how well the methods perform on unknown cameras.

The largest single illuminant dataset is the Intel-TAU (Laakom et al.,
2021) dataset, which contains over 7000 images. The dataset was cre-
ated with three different cameras and contains indoor scenes, outdoor
scenes, laboratory printout scenes, and laboratory environment scenes.
The dataset also uses the ColorChecker to extract illumination ground
truth.

Another dataset is the Cube+ (Bani¢ et al., 2017) dataset. This
dataset contains over 1700 single illuminant images all of which have
been captured by a single camera, containing indoor, daytime out-
door, and night-time outdoor scenes. Unlike the previously mentioned
datasets, the authors used a SpyderCube to extract the illumination
and unlike the ColorChecker, the SpyderCube only has gray and white
surfaces that can be used for illumination extraction.

As the main focus of computational color constancy was illumi-
nation estimation in images with single uniform illumination, there
are not as many multi-illuminant datasets. Existing multi-illuminant
datasets (Beigpour et al., 2013; Bleier et al., 2011; Gijsenij, Lu et al.,
2011) are fairly small, containing less than 100 images.

An example of a multi-illuminant dataset is described in Bleier et al.
(2011). It is a fairly small dataset containing 36 images that were
captured using a Canon EOS 550D camera. Four different scenes were
captured in 9 different multi-illuminant environments. Both the scene
and illumination conditions were artificially created in a laboratory
environment. The illumination setup was created using two Reuter
lamps with LEE color filters.

The second dataset is the Multiple Light Sources (Gijsenij, Lu et al.,
2011) dataset. This dataset holds almost twice as many images as
the dataset from Bleier et al. (2011). Images were taken using the
Sigma SD10 camera. In addition to laboratory environment images(59),
this dataset also contains real-world images(9). In order to extract the
illumination, gray objects were placed in the scenes.

The last on our list is the Multiple-Illuminant Multi-Object (Beigpour
et al., 2013) dataset. It is the largest of the presented multi-illuminant
datasets, containing 80 images. The images were captured using the
Sigma SD10 camera as well. The dataset consists of 60 images taken in a
laboratory environment and 20 real-world images, but does not contain
80 unique images. Instead, the 60 laboratory images are 10 different
scenes that were taken under 6 different illumination conditions.

In addition to the dataset, the authors of Beigpour et al. (2013) also
propose a method for the automatic creation of a per-pixel illumination
mask. This mask shows the influence of each illuminant on each pixel.
To achieve this, the authors took three images of each scene: one with
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Table 1
Table representing the number of images taken by each camera presented by type of
image.

Outdoor Indoor Nighttime
Canon 5D 395 39 61
Canon 550D 403 44 57
Motorola 400 40 59
Sony 400 38 60
Panasonic 395 39 70

both illuminants, one with only the first illuminant, and one with only
the second illuminant present. To create the mask, they used these
images as well as the fact that the scene taken under both illuminants is
the sum of the two scenes where only one of the illuminants is present.
This method was not used in this paper, as for this method to work,
we would need to be able to turn off scene illumination. This is a
very restrictive condition since the illumination cannot be turned off
or entirely obscured in most real-world situations, for which the most
obvious example is the sun.

4. Dataset overview

In this paper, we introduce the Shadows & Lumination dataset, a
large-scale publicly available multi-illuminant dataset. The images in
the dataset are minimally processed. Images are processed with dcraw
an open-source program that decodes various RAW image formats into
standard, commonly used image formats. The flags —T —-D -4 are used.
The program outputs an image in a 16-bit format in the camera’s RAW
color space.

Afterward, simple debayering was performed. The red and blue
components were directly taken from the Bayer pattern and the green
component was obtained by averaging the two green components of the
Bayer pattern. This method reduces the width and height of the image
by half. Since RAW images have very high dimensionality, this does not
have a noticeable effect on how an image looks. We used this method as
it has almost no artifacts to create minimally processed images for our
dataset. Some images also contain black boxes over parts of the image.
These black boxes are used to mask sensitive private information, such
as faces, to make the dataset GDPR-compliant.

The camera setup used to take images differs from image to image.
There are no consistencies between the images except for ISO, where
the smallest ISO was used. For the sake of completeness, we provide
the EXIF metadata with each image.

The dataset contains 2500 images from a diverse set of scenes taken
in various locations. The images in the dataset can be divided into
groups based on what scene the image captures. There are three types:
images taken outside during the daytime, images taken outside during
the night-time, and images that were taken indoors during various
times of the day. Five different cameras by four manufacturers were
used to create the dataset. Cameras used were the Canon EOS 5D Mark
11, the Canon EOS 550D, the Panasonic DMC-FZ1000, the Sony DSLR-
300, and the Motorola One Fusion+ mobile phone camera. Motorola
One Fusion+ uses the Samsung ISOCELL Plus GW1 1/1.72” camera
sensor. All scene types were captured with each camera to keep the
dataset balanced. The exact numbers can be seen in Table 1. Example
images from all cameras can be seen in Fig. 1.

4.1. Dataset creation

Each image in the dataset is accompanied by the extracted ground
truth illumination and a segmentation mask that divides the image into
two regions. Each region contains only one illuminant.
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4.1.1. Illumination

The illuminants in the dataset can be divided into two groups. Each
image has one illuminant from each group. The first is a direct light
source and the second is an ambient light source. A simple example of
a direct light source is the sun, whereas a clear sky is a simple example
of an ambient light source. The direct light source is the stronger
illuminant that only illuminates part of the scene. The ambient light
source illuminates the entire image, but only has an effect in the regions
where the direct light does not reach since it is the weaker illuminant
and gets suppressed by the stronger illuminant.

As mentioned previously, in the daytime image, the two illuminants
are the sun and the sky. For night-time and indoor images, the situation
is slightly more complex. In night-time images, the direct light source
is most often a LED, incandescent, or sodium street lamp. The night
sky can be seen as the ambient light, but the problem is that it has
a low intensity, and other artificial lights often overpower it. This
led to instances where there is a clear shadow in the image, but
its illumination color is almost identical to the direct light source.
The ambient light is not well-defined and is often a combination of
artificial lights in the area reflected from various surfaces. This also
causes the creation of images where the shadow contains non-uniform
illumination that is difficult to segment. Such images were discarded as
they do not satisfy the requirements of the dataset. A tungsten lightbulb
is the direct light source in most indoor images. Here the ambient light
is also not well-defined and the same problems as in night-time images
can occur. How these images were detected and removed is explained
in more detail later in this section.

To extract the illumination, the SpyderCube calibration object was
used. A SpyderCube has four different faces. Two faces are white(WL,
WR) and two are spectrally neutral 18% gray faces(GL, GR). The faces
on the SpyderCube are divided into two surfaces, left (GL, WL) and
right (GR, WR) which are positioned at an angle. Each surface contains
one gray and one white face. A SpyderCube can be seen in Fig. 2. The
illumination was extracted from gray faces by calculating the average
value of a gray face. White faces were not used as illumination, since
they were oversaturated in some images.

The extracted illuminations can be seen in Figs. 3 and 4. Fig. 3
shows how the illuminants are distributed based on which camera was
used to capture the image. Fig. 3 shows that the two Canon cameras
have similar illumination distribution, which makes sense since they
are from the same manufacturer. But Fig. 3 also shows that the Sony
and Motorola cameras have similar illumination distributions, even
though the Sony camera uses a Sony camera sensor and the Motorola
uses a Samsung camera Sensor.

Fig. 4 displays how the illuminants are distributed based on image
type. It shows that the outdoor and night-time images have signif-
icantly different illuminations, while indoor image illuminations are
in-between outdoor and night-time illuminations since indoor images
contain both natural lighting and artificial lighting.

Since SpyderCube is a simple and relatively cheap calibration de-
vice, we performed experiments to test SpyderCube’s precision, primar-
ily to see how consistent the extracted illuminant is between different
SpyderCubes. The test was executed using three SpyderCubes to detect
the similarity between the extracted illuminants. In the experiment, we
placed the SpyderCubes in such a way that all of them were illuminated
by the same illuminant. The illuminations were extracted from the gray
faces of each SpyderCube and were subsequently grouped into left and
right based on which side of the SpyderCube they were, respectively.
The similarities between all the faces in a group were calculated using
angular distance. The side with the smaller angular distance between
the faces was selected. The angular distance is calculated using Eq. (4),
where L and L are illumination vectors extracted from two SpyderCube
faces. The illumination vector is obtained by calculating the average
RGB value of the SpyderCube face.

After selecting a side, the angular distance between the gray-face
illuminants was compared with the illuminants extracted from the
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Fig. 1. A couple example images. The leftmost image was taken by the Motorola camera. The top row images were taken by the Canon 5D and Canon 550D cameras. The bottom

row images were taken by the Sony and Panasonic cameras.

Fig. 2. A SpyderCube. GL and GR represent the gray faces. WL and WR represent the
white faces.

® Canon 550D
0.7 Canon 5D
0.6 ™ ® Motorola

» Sony
0.5 Panasonic

0.4

0.3
0.2
0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
r

Fig. 3. Ilumination distribution of the dataset by camera.

white faces on the same surface. The gray face with the smallest angular
distance to its white face was selected as the ground truth illumination.
This experiment was performed for direct and ambient light sources.
The test was done on 170 images. It showed that in 20% of images,
the angular distance of the extracted illuminants was over 2° for the
ambient illuminant. The average angular distance of the images is
3.05°. The experiment revealed that the variety of reflective surfaces,
the orientation of the SpyderCubes, and the distance of the Spyder-
Cubes from the camera, as well as to one another could all affect

® Outdoor
Nighttime
® Indoor

0.7

0.6
0.5
004
0.3
0.2

0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
r

Fig. 4. Illumination distribution of the dataset by image type.

the ambient illumination extracted from the SpyderCubes. Because of
this, the ambient illumination needs an extra SpyderCube to confirm
that the extracted illumination is precise. The angular distance of 2°
was selected as the border between one and two illuminants based on
research done in Hordley (2006).

For direct illumination, the difference between cubes was not
greater than 1°. Due to the aforementioned experiments, each image
contains three SpyderCubes, one for the direct light source and two
for the ambient light source. The angular distance between the Spyder-
Cubes in ambient light is less or equal to 2°, while the angular distance
between the SpyderCubes in direct light and ambient light is always
greater than 2°.

These experiments demonstrate that even though the regions in
the shadows appear as though they are uniformly illuminated, there
are situations where the shadow illumination map can be non-uniform
and may contain multiple illuminants. Consequently, a more rigorous
method for illumination extraction is required so that we can be sure
that the illumination in the shadows is uniform.

The face selection for the direct illuminant was simple since only
one SpyderCube is used. In most situations, only one gray face was
illuminated by the direct light source, and that face was selected for
illumination extraction. In situations where both faces were illuminated
by the direct light source, the gray face which is more similar to its
white face by the measure of angular distance was selected as the
ground truth. In the final situation, where both gray faces are illumi-
nated by the direct light source and the white faces are oversaturated,
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Fig. 5. Two images and their segmentation masks underneath them.

the angular distance between the gray faces is calculated. If the distance
was less than 2°, the left face was used as the ground truth. If the
distance was greater than 2°, the image was removed from the dataset.

The face selection for ambient light was similar. The illumination
was extracted from the gray faces on both SpyderCubes and the gray
faces were then grouped into left and right. The angular distance
between the gray faces in each group was calculated and the group
with the smaller angular distance was then selected. In the selected
group, the angular distance between each gray face and its white face
was calculated. The gray face with the smaller angular distance from
its white face was finally selected as the ground truth.

The use of two SpyderCubes in ambient light and one in direct light
does not help us during image acquisition, but it does allow us to filter
out images with improper illumination labels from the dataset. It allows
us to ensure that the two illuminants present in the image are different
enough for the image to have multi-illuminant lighting. We used 2° as
the threshold. The research from Hordley (2006) states that humans
can differentiate two colors if their angular distance is over 2°. Finally,
it allows us to confirm that illumination in the shadows is uniform so
that the image can be used for proper multi-illuminant estimation.

4.1.2. Segmentation mask

The other part of the dataset is the illumination segmentation
masks. An illumination segmentation mask is notoriously difficult to
create when an image has multiple illuminants. A method for automatic
labeling has been proposed (Beigpour et al., 2013), but the problem
with this method is that we need to be able to turn off present illumi-
nants. This is not possible in most situations. Therefore, we simplified
the labeling process. Because each image has a direct light source
and an ambient light source, the illuminants are uniform and there
is a clear border between them. This makes the labeling processing
simpler, but the labeling must still be done manually. This very time-
consuming process was performed by multiple experts, resulting in
2500 illumination segmentation masks.

Since the labeling is done manually, the chances of subjective errors
are much higher. To minimize this error, each image was corrected
using the extracted illumination and the created segmentation mask.
Multiple experts were then used to validate that the correct illuminant
was used and that the segmentation mask regions coincide with the
illumination regions of each illuminant. A couple of example images
and their masks can be seen in Fig. 5.

4.2. Dataset structure

The dataset contains five folders, one for each camera. Each camera
folder contains three folders: one for outdoor daytime, one for outdoor
night-time, and one for indoor images. Each image has its own folder
which is indexed starting at 1. For each image, we provide the mini-
mally processed png file, the ground truth illumination file, the png
illumination segmentation mask file, the txt file containing calibration
object locations, the txt file containing the image regions where the
sensitive data has been masked, and the image EXIF metadata text
file. The ground truth illumination file contains the L2 normalized
RGB values of the two illuminants, the first value being the ambient
illuminant and the second being direct light. The segmentation mask
file contains a binary mask where 1 represents pixels under the ambient
illuminant and 2 represents pixels under the direct illuminant. The
calibration object file contains the locations of the calibrations objects
used to extract the scene illumination. This file is present, as the
calibration object needs to be removed before using the image for
neural network training since a neural network can be trained to search
for the calibration object and extract the ground truth from it. The EXIF
metadata is provided instead of RAW images since RAW images are not
GDPR-compliant.

A couple of preprocessing steps need to be applied to properly use
the dataset. Firstly, the blacklevel needs to be removed from the image.
Different cameras have different blacklevels. The Sony camera has no
blacklevel. The Motorola camera has a blacklevel of 63. The Panasonic
camera has a blacklevel of 127. The Canon 5D has a blacklevel of 1024.
The Canon 550D has a blacklevel of 2048. Secondly, the calibration
objects must be masked. Finally, the oversaturated pixels need to be
set to 0. We provide a Python script image loader that performs the
preprocessing steps with the dataset.

5. Dataset evaluation

For proper dataset evaluation, we propose three different evaluation
protocols. The first protocol uses all the images to evaluate a method.
The second evaluates how well a method performs when it encounters
images from an unknown camera sensor. The final protocol tests how
well a method performs on different types of images.
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5.1. Metrics

We used the angular error metric to evaluate the results of multi-
illuminant estimation methods.

A) )

Angular error = cos™! < —
LAl 1Ll

L represents the ground truth RGB illumination vector, L. represents
the predicted RGB illumination vector, - the scalar product, and || || the
L2 norm. The angle is calculated in degrees.

The dice metric was used to evaluate the results of the multi-
illuminant image segmentation methods.

Dice=—2F ®)
2TP+ FP+ FN

TP are true positives or pixels that have correctly been labeled as
ambient illuminant pixels, FP are false positives or pixels that have
incorrectly been labeled as ambient illuminant pixels, and FN are
false negatives or pixels that have incorrectly been labeled as direct
illuminant pixels.

5.2. Use-All protocol

The first protocol is the simplest one and is commonly used for other
color constancy datasets. For this protocol, all the images in the dataset
are used. We propose a 5-fold split. Each fold contains around 500
images. All cameras and all image types are present in each fold. We
provide the results obtained by taking the average of the results from
the five folds.

5.3. One-to-Many protocol

The next protocol tests how well a method performs when it en-
counters a camera sensor not seen during training. For this protocol, the
dataset is again divided into five subsets. This time, each fold contains
images from only one camera. Each camera is used for training once,
while being used for testing four times. We provide the average result
of all five experiments.

5.4. By-Type protocol

The final protocol represents three different experiments. With this
protocol, we test how well a method performs on the three types of
images present in the dataset. The three types are daytime outdoor,
night-time outdoor, and indoor images. For each of the three subsets,
we propose a 5-fold split. The splits are provided with the datasets.
Like the Use-All protocol, one 5-fold subset is used for testing while
the others are used for training. We provide the results for each of the
image type subsets.

6. Experimental results

In addition to the dataset, we also provide results obtained using
existing methods. Two types of experiments were performed on the
dataset. The first is image segmentation, in order to determine how
existing image segmentation models perform when the task is to seg-
ment the image into regions where only one illuminant is present.
The second is illumination estimation to establish how existing multi-
illuminant estimation models perform on this dataset. For the sake of
completeness, we include traditional non-learning methods and more
complex learning-based methods for dataset evaluation.

To validate each method we use a 5-fold split, which means there
are 5 model instances and 5 testing sets. The errors from all the test
sets were then grouped and used to calculate the metrics which are
shown in the tables. We used this approach because we get more
accurate results for the best 25%, worst 25%, median, and trimean than
calculating the metrics for each fold and then averaging the results.
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6.1. Image segmentation results

For the traditional non-learning-based methods, we used the most
popular methods from the literature. These methods are simple thresh-
olding, Max Entropy (Leung & Lam, 1994), and OTSU (Otsu, 1979).

For simple thresholding, we transform the image into HLS color
space and create a mask by selecting a threshold level and making a
binary mask from the L channel. For OTSU, we transform the image
into grayscale color space and select a threshold so that the variance for
each of the created classes is minimized. Finally, for Max Entropy the
image is also transformed into grayscale color space, but the selected
threshold maximizes the entropy of the data in each class.

For learning-based methods, we experimented with four widely
used image segmentation models. These models are used in a variety
of different computer vision tasks, and we decided to test them on
the problem of image segmentation based on illumination. As the
backbone of these models, we decided to use two popular models:
VGG16 (Simonyan & Zisserman, 2014) and SEResNetl8 (Hu et al.,
2018). We employ transfer learning (Tan et al., 2018) with backbones
pretrained on ImageNet (Deng et al., 2009). The backbones are used
for image feature extraction. We use these backbones in combination
with the UNet, LinkNet, PSPNet, and FPNNet segmentation models. The
main feature of these segmentation models is that they are made of
two parts, the encoder, and the decoder. The encoder extracts useful
image information by downsampling using convolutional layers, and
the decoder upsamples the extracted information using deconvolutional
layers. They use skip connection to combine information extracted at
each downsampling stage with its corresponding upsampling stage. In
UNet the stages are combined by concatenating the downsampling and
upsampling stages. In LinkNet the stages are combined by adding the
downsampling and upsampling stages. FPNNet also combines the up-
sampling and downsampling stages by addition, but they have the same
number of filters for each deconvolutional layer in the decoder. They
also perform predictions independently for each upsampling stage.
PSPNet uses a pyramid pooling module which is placed between the
encoder and decoder. This module uses convolutional layers of different
kernel sizes to extract global and local image information.

The results of the multi-illuminant image segmentation can be
viewed in Table 2. The mean dice score for all protocols can be
observed here. Table 2 shows that the learning-based methods out-
perform the traditional methods. The worst performing method is
Max-Entropy (Leung & Lam, 1994) which has the worst results for all
the protocols. The results of the traditional methods on the Use-All and
One-to-Many are the same since these methods require no training, so
the two protocols do not affect them.

For the Use-all protocols, the learning-based methods have very
similar performance with most models having a dice score of around
0.88, with FPN (Lin et al., 2017) having the best dice score of 0.893.
The results on the One-to-Many protocol are slightly worse than the
Use-all protocol, with dice scores of around 0.85. The unknown camera
sensors in the testing set and the smaller training set cause the lower
model accuracy. For this protocol, the best performance is obtained by
UNet (Ronneberger et al., 2015).

When looking at the By-Type protocol, we can see that the easiest
images to segment are the Outdoor images and the hardest to segment
are the Indoor images. This makes sense since Outdoor images contain
only natural light, while Indoor images contain both artificial and
natural lighting. The Table also shows that images with only artificial
lighting are harder to segment than images with only natural lighting.
The dice score for Outdoor images is around 0.89, the dice score for
Nighttime images is around 0.86, and the dice score for Indoor images
is around 0.79. UNet performs best on Outdoor images, while FPN
performs the best on Indoor and Nighttime images.
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Table 2
The mean and standard deviation dice scores of different methods tested using different protocols. The results with the best mean are
bolded.

Method Use-All One-to-Many Outdoor Indoor Nighttime
Simple thresholding 0.809 + 0.126 0.809 + 0.126 0.808 + 0.128 0.736 + 0.149 0.802 + 0.153
Max entropy 0.715 + 0.224 0.715 + 0.224 0.730 + 0.202 0.656 + 0.242 0.684 + 0.289
(Leung & Lam, 1994)

Otsu (1979) 0.801 + 0.107 0.801 + 0.107 0.809 + 0.106 0.748 + 0.096 0.779 + 0.118
UNet (VGG16) 0.882 + 0.120 0.851 + 0.133 0.888 + 0.120 0.791 + 0.130 0.864 + 0.128
(Ronneberger et al.,

2015)

UNet (SEResNet18) 0.892 + 0.125 0.868 + 0.128 0.901 + 0.122 0.801 + 0.114 0.874 + 0.123
(Ronneberger et al.,

2015)

LinkNet (VGG16) 0.879 + 0.120 0.849 + 0.132 0.891 + 0.015 0.783 + 0.123 0.855 + 0.128
(Chaurasia &

Culurciello, 2017)

LinkNet (SEResNet18) 0.889 + 0.124 0.855 + 0.129 0.893 + 0.120 0.780 + 0.117 0.869 + 0.127
(Chaurasia &

Culurciello, 2017)

FPN (VGG16) 0.887 + 0.122 0.855 + 0.136 0.894 + 0.119 0.803 + 0.123 0.861 + 0.127
(Lin et al., 2017)

FPN (SEResNet18) 0.893 + 0.119 0.865 + 0.129 0.900 + 0.124 0.796 + 0.121 0.877 + 0.124
(Lin et al., 2017)

PSPNet (VGG16) 0.880 + 0.120 0.853 + 0.138 0.798 + 0.115 0.752 + 0.168 0.855 + 0.130
(Zhao et al., 2017)

PSPNet (SEResNet18) 0.868 + 0.125 0.841 + 0.133 0.791 + 0.121 0.723 + 0.159 0.868 + 0.130

(Zhao et al., 2017)

6.2. Illuminant estimation results

For testing, we used three different traditional methods as well as
three learning-based methods that were created for multi-illuminant
estimation. Two of the traditional methods employ the Grey-Edge
framework (Van De Weijer et al., 2007) as a basis for their approach.
This framework contains a large number of methods, and for the sake
of simplicity, only the best-performing Grey-Edge method was used for
each illumination estimation method. The methods in the framework
are very simple. For example, the White-Patch method (Land, 1977)
uses the assumption a surface that perfectly reflects light will have
the color of the illuminant. To estimate the illuminant, the highest
value of each color channel is extracted. The values are combined and
normalized to create the RGB illuminant vector. For the learning-based
methods, we used three different convolutional neural networks (CNN).

All the traditional methods divide the image into small regions.
They assume each region is illuminated by only one illuminant which is
estimated for each region. Gijsenij et al. (2012) uses three different ap-
proaches to segment the image, uniformly shaped patches, superpixels,
and keypoint regions. Hussain and Akbari (2018) divides the image into
four regions using Euclidean distance. Beigpour et al. (2013) divides
the image into uniformly shaped patches. Beigpour et al. (2013) they
use Conditional Random Fields to find the optimal illuminant for each
patch from the set of extracted patches.

Bianco et al. (2017) and Shi et al. (2016a) divide the image into
patches and perform single-illuminant estimation for each patch. The
difference between the models is that Bianco et al. (2017) outputs one
prediction per patch and Shi et al. (2016a) uses two neural networks.
One network gives two predictions per patch, and the other network
selects which prediction is more accurate. Domislovi¢ et al. (2021)
uses the entire image for multi-illuminant estimation. The model is a
modified version of FC4 (Hu et al., 2017). It contains two outputs, one
for each illuminant and an attention mechanism for each output. The
attention mechanism is used to ignore the regions of the image that
contain the wrong illuminant.

Again, the results of the traditional methods are the same in Tables 3
and 4. Unlike learning-based methods, traditional methods need no
training, and testing devolves into testing on all images. Unlike the
image segmentation problem where the learning-based methods have
significantly better performance, the traditional and learning-based
methods have comparable results. The best-performing method for the

Use-All protocol is the method from Domislovi¢ et al. (2021). Another
thing that can be observed in Table 3 is the fact that Direct illumination
is much easier to estimate than Ambient illumination. This makes
sense since Direct illumination is stronger and has a single source,
while Ambient illumination is weaker and is the combination of the
illumination and the reflections of all the surfaces in the scene.

The results of the One-to-Many protocol can be viewed in Table 4,
in which we can recognize a significantly better performance of tra-
ditional methods in most metrics. The exceptions are the worst 25%
for Ambient and Both and the mean for Ambient, where the method
from Domislovi¢ et al. (2021) has the best performance. The reason
why traditional methods outperform learning methods is that they do
not depend on data, and in the case of this protocol, they do not overfit
on one camera Sensor.

Examining Table 5, we can see that the best performance is ob-
tained on the Outdoor images and the worst on the Indoor images,
since Outdoor images contain only natural lighting, Nighttime images
contain only artificial lighting, and Indoor images contain both types
of lighting. Fig. 4 also shows us that the illumination gamut of Outdoor
images is the smallest and is, therefore, easiest to estimate. When
looking at Outdoor and Indoor images the best performing method is
the method from Domislovi¢ et al. (2021) and the best method for
Nighttime images is the Patch-based variant of the method introduced
in Gijsenij et al. (2012).

7. Conclusion

In this paper, we introduce a novel large-scale multi-illuminant
dataset containing 2500 images taken by five different cameras. Each
photo is accompanied by a segmentation mask file and an extracted
illumination file. The created dataset can be used for both illumination
estimation and image segmentation. The dataset follows GDPR privacy
regulations, and all sensitive data has been masked. We give a detailed
overview of how the images in the dataset were collected and labeled.
Moreover, we propose three different evaluation protocols. One of these
protocols can be used to evaluate how a method performs when it
encounters an image from an unknown camera. Another can be used to
see how a method performs with different illuminant and scene types.
We tested several methods from the literature on our proposed dataset
and compared their results.
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Table 3

The mean, median best 25%, and worst 25% angular error scores of different methods tested using the Use-All protocol. Direct represents when only the direct light source
illuminant estimation accuracy is examined. Ambient represents when only the ambient light source illumination estimation accuracy is examined. Both represents how well the
methods perform in general. The best results are bolded.

Method Ambient Direct Both

Mean med. Best 25% Worst 25% Mean med. Best 25% Worst 25% Mean med. Best 25% Worst 25%

Hussain and Akbari (2018) 13.19 13.09 6.55 20.09 14.15 13.72 8.72 20.35 13.67 13.46 7.54 20.22

CRF (White-Patch) 8.40 6.84 1.74 17.96 5.98 4.56 1.36 13.03 7.19 5.44 1.52 15.81

(Beigpour et al., 2013)

Patch-based (White-Patch) 4.89 3.00 0.95 12.22 3.70 2.81 1.09 7.92 4.30 2.89 1.02 10.13

(Gijsenij et al., 2012)

Keypoint-based (White-Patch) 6.90 4.52 1.32 16.62 4.01 2.97 0.96 8.91 5.46 3.59 1.11 13.15

(Gijsenij et al., 2012)

Superpixel-based (2nd Order) 5.00 3.63 1.26 11.25 3.39 2.71 0.97 7.08 4.20 3.10 1.09 9.32

(Gijsenij et al., 2012)

Bianco et al. (2017) 9.17 7.36 3.43 18.04 6.85 4.58 1.45 16.91 8.01 5.65 2.15 17.98

HypNet/SelNet 6.20 4.20 0.92 14.94 6.41 3.66 0.78 16.90 6.31 3.95 0.85 15.95

(Shi et al., 2016b)

Domislovi¢ et al. (2021) 2.84 2.13 0.74 6.21 1.71 1.22 0.44 3.86 2.28 1.60 0.55 5.22
Table 4

The mean angular error score of different methods tested using the One-to-Many protocol. Direct represents when only the direct light source illuminant estimation accuracy is
examined. Ambient represents when only the ambient light source illumination estimation accuracy is examined. Both represents how well the methods perform in general. The
best results are bolded.

Method Ambient Direct Both

Mean med. Best 25% Worst 25% Mean med. Best 25% Worst 25% Mean med. Best 25% Worst 25%

Hussain and Akbari (2018) 13.19 13.09 6.55 20.09 14.15 13.72 8.72 20.35 13.67 1346  7.54 20.22

CRF (White-Patch) 8.40 6.84 1.74 17.96 5.98 4.56 1.36 13.03 7.19 5.44 1.52 15.81

(Beigpour et al., 2013)

Patch-based (White-Patch) 4.89 3.00 0.95 12.22 3.70 2.81 1.09 7.92 4.30 2.89 1.02 10.13

(Gijsenij et al., 2012)

Keypoint-based (White-Patch) 6.90 4.52 1.32 16.62 4.01 2.97 0.96 8.91 5.46 3.59 1.11 13.15

(Gijsenij et al., 2012)

Superpixel-based (2nd Order) 5.00 3.63 1.26 11.25 3.39 2.71 0.97 7.08 4.20 3.10 1.09 9.32

(Gijsenij et al., 2012)

Bianco et al. (2017) 10.09 8.21 3.17 20.40 9.48 7.39 3.26 20.02 9.78 7.67 3.21 20.36

HypNet/SelNet 8.35 6.00 1.31 19.41 7.67 4.98 1.05 19.12 8.01 5.45 1.17 19.31

(Shi et al., 2016b)

Domislovi¢ et al. (2021) 4.83 4.18 1.83 9.05 4.58 4.20 1.89 7.85 4.71 4.19 1.86 8.45
Table 5

The mean, median best 25%, and worst 25% angular error scores of different methods tested on the three variants of the By-Type protocol. Direct represents when only the direct
light source illuminant estimation accuracy is examined. Amb. represents when only the ambient light source illumination estimation accuracy is examined. Both represents how
well the methods perform in general. The best results are bolded.

Method Outdoor Indoor Nighttime

Amb. Direct Both Amb. Direct Both Amb. Direct Both
Hussain and Akbari (2018) 13.44 12.94 13.19 15.42 14.26 14.84 16.91 15.79 16.35
CRF (White-Patch) 9.00 5.62 7.31 8.16 9.40 8.78 7.10 6.81 6.96
(Beigpour et al., 2013)
Patch-based (2nd Order) 5.21 3.84 4.53 5.76 5.40 5.58 4.39 2.57 3.48
(Gijsenij et al., 2012)
Keypoint-based (White-Patch) 7.39 4.15 5.77 6.99 5.50 6.25 5.06 2.93 3.99
(Gijsenij et al., 2012)
Superpixel-based 5.88 3.59 4.73 5.78 4.57 5.18 5.98 3.29 4.63

(White-Patch)
(Gijsenij et al., 2012)

Bianco et al. (2017) 3.74 5.98 4.86 7.98 6.85 7.42 7.61 8.82 8.22
HypNet/SelNet 5.99 6.26 6.09 6.49 7.65 7.07 5.28 4.24 4.76
(Shi et al., 2016b)

Domislovi¢ et al. (2021) 2.26 1.30 1.78 4.72 4.18 4.45 4.42 2.93 3.68
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