Pregled bibliografske jedinice broj: 1265610
Shadows & Lumination: Two-illuminant multiple cameras color constancy dataset
Shadows & Lumination: Two-illuminant multiple cameras color constancy dataset // Expert systems with applications, 224 (2023), 120045, 9 doi:10.1016/j.eswa.2023.120045 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1265610 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Shadows & Lumination: Two-illuminant multiple cameras color constancy dataset
Autori
Domislović, Ilija ; Vršnak, Donik ; Subašić, Marko ; Lončarić, Sven
Izvornik
Expert systems with applications (0957-4174) 224
(2023);
120045, 9
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
multi-illuminant dataset ; color constancy ; image color analysis ; image processing ; image segmentation
Sažetak
In this paper, we introduce a new large-scale publicly available color constancy dataset which we are calling the Shadows & Lumination dataset. The dataset contains 2500 minimally processed images from various indoor, outdoor, and night-time scenes. This dataset is GDPR-compliant, as we masked out all sensitive private information from the images. Unlike most other color constancy datasets, our dataset contains real-world images with two illuminants is appropriate for multi-illuminant estimation. In addition to the illumination, we provide a binary segmentation mask for each image. In the segmentation mask, we divide the image into two regions, where each region is illuminated by only one of the illuminants. We give an explanation of the methodology used to create the dataset. For dataset creation, we used five cameras: Canon 5D, Canon 550D, Sony α300, Panasonic FZ1000, and the Motorola one fusion+ mobile camera. Finally, we tested several state-of-the-art illumination estimation and image segmentation models on our dataset. The dataset is publicly available11bit.ly/shal_dataset Direct link.. This paper also benchmarks several illumination estimation methods as well as several image segmentation methods on our dataset.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus