Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1263594

Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule‑based models


Volf, Goran; Žutinić, Petar; Gligora Udovič, Marija; Kulaš, Antonija; Mustafić, Perica
Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule‑based models // Environmental Monitoring and Assessment, 195 (2023), 4; 508, 20 doi:10.1007/s10661-023-11060-9 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1263594 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule‑based models

Autori
Volf, Goran ; Žutinić, Petar ; Gligora Udovič, Marija ; Kulaš, Antonija ; Mustafić, Perica

Izvornik
Environmental Monitoring and Assessment (0167-6369) 195 (2023), 4; 508, 20

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Butoniga reservoir ; Phytoplankton Phylum ; Phytoplankton abundance and biomass ; Statistical analysis ; Machine learning ; Decision trees ; Rule-based models

Sažetak
Phytoplankton represents one of the most important biological components of primary production, trophic interactions and circulation of organic matter in lakes and reservoirs. To contribute to the understanding of eutrophication processes and ecological status of the small, shallow Butoniga reservoir, a machine learning tool for induction of models in form of decision trees and rule-based models was applied on a data set comprising physical, chemical and biological variables measured at four stations. Two types of models were successfully elaborated, i.e. (1) model describing phytoplankton Phylum which describes and connects phytoplankton Phylum with phytoplankton abundance and biomass, and (2) model simulating phytoplankton biomass according to environmental variables which could be used in management purposes. Such models and their presentation contribute to a better understanding of the Butoniga reservoir ecosystem functioning.

Izvorni jezik
Engleski

Znanstvena područja
Biologija, Građevinarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
NadSve-uniri-tehnic-18-129 - Održivo upravljanje riječnim slivom implementacijom inovativnih metodologija, pristupa i alata (Karleuša, Barbara, NadSve ) ( CroRIS)
IP-2018-01-1645 - Utjecaj otvorenih požara na kvalitetu tla i voda (POP&KTV) (Kisić, Ivica, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Građevinski fakultet, Rijeka,
Prirodoslovno-matematički fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

doi link.springer.com link.springer.com

Citiraj ovu publikaciju:

Volf, Goran; Žutinić, Petar; Gligora Udovič, Marija; Kulaš, Antonija; Mustafić, Perica
Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule‑based models // Environmental Monitoring and Assessment, 195 (2023), 4; 508, 20 doi:10.1007/s10661-023-11060-9 (međunarodna recenzija, članak, znanstveni)
Volf, G., Žutinić, P., Gligora Udovič, M., Kulaš, A. & Mustafić, P. (2023) Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule‑based models. Environmental Monitoring and Assessment, 195 (4), 508, 20 doi:10.1007/s10661-023-11060-9.
@article{article, author = {Volf, Goran and \v{Z}utini\'{c}, Petar and Gligora Udovi\v{c}, Marija and Kula\v{s}, Antonija and Mustafi\'{c}, Perica}, year = {2023}, pages = {20}, DOI = {10.1007/s10661-023-11060-9}, chapter = {508}, keywords = {Butoniga reservoir, Phytoplankton Phylum, Phytoplankton abundance and biomass, Statistical analysis, Machine learning, Decision trees, Rule-based models}, journal = {Environmental Monitoring and Assessment}, doi = {10.1007/s10661-023-11060-9}, volume = {195}, number = {4}, issn = {0167-6369}, title = {Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule‑based models}, keyword = {Butoniga reservoir, Phytoplankton Phylum, Phytoplankton abundance and biomass, Statistical analysis, Machine learning, Decision trees, Rule-based models}, chapternumber = {508} }
@article{article, author = {Volf, Goran and \v{Z}utini\'{c}, Petar and Gligora Udovi\v{c}, Marija and Kula\v{s}, Antonija and Mustafi\'{c}, Perica}, year = {2023}, pages = {20}, DOI = {10.1007/s10661-023-11060-9}, chapter = {508}, keywords = {Butoniga reservoir, Phytoplankton Phylum, Phytoplankton abundance and biomass, Statistical analysis, Machine learning, Decision trees, Rule-based models}, journal = {Environmental Monitoring and Assessment}, doi = {10.1007/s10661-023-11060-9}, volume = {195}, number = {4}, issn = {0167-6369}, title = {Describing and simulating phytoplankton of a small and shallow reservoir using decision trees and rule‑based models}, keyword = {Butoniga reservoir, Phytoplankton Phylum, Phytoplankton abundance and biomass, Statistical analysis, Machine learning, Decision trees, Rule-based models}, chapternumber = {508} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font