Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1262199

DERIVATION MATRIX IN MECHANICS – DATA APPROACH


Kožar, Ivica; Plovanić, Marina; Sulovsky; Tea
DERIVATION MATRIX IN MECHANICS – DATA APPROACH // Engineering review (Technical Faculty University of Rijeka), 43 (2023), 1; 295818, 9 doi:10.30765/er.1892 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1262199 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
DERIVATION MATRIX IN MECHANICS – DATA APPROACH

Autori
Kožar, Ivica ; Plovanić, Marina ; Sulovsky ; Tea

Izvornik
Engineering review (Technical Faculty University of Rijeka) (1330-9587) 43 (2023), 1; 295818, 9

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Derivation matrix ; Boundary conditions ; Lagrange polynomials ; Finite difference method

Sažetak
Existence of data allows use of solution methods for differential equationsthat would otherwise be inapplicable. The solution process for this is formalized by using derivation matrices that reduce the time necessary for derivation and solving of differential equations. Derivation matrices are formulated by applying numerical methods in matrix notation, like finite difference schemes. In this work, a novel formulation is developed based on Lagrange polynomials with special care taken at boundary pointsin orderto persevere a uniform precision. The main advantage of the approach is straightforward formulation, clear engineering insight into the process and (almost) arbitrary precision through choice of the interpolation order. The result of this procedure is the derivation matrix of the dimension [n×n], where 'n' is the number of data points. The resulting matrix is singular (of rank 'n-1') until boundary/initial conditions are introduced. However, that does not prevent the user to successfully differentiate its unknown function represented with the recorded data points. Derivation matrix approach is easily applicable to a wide range of engineering problems. This methodology could be extended to dynamic systems with multiple degrees of freedom and adapted when velocities or accelerations are recorded instead of displacements.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Građevinarstvo



POVEZANOST RADA


Projekti:
IP-2019-04-7926 - Razdvajanje uticaja parametara u inžinjerskom modeliranju s parametarskom identifikacijom (SEPAEMPI) (Kožar, Ivica, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Građevinski fakultet, Rijeka

Profili:

Avatar Url Ivica Kožar (autor)

Avatar Url Tea Sulovsky (autor)

Avatar Url Marina Plovanić (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Kožar, Ivica; Plovanić, Marina; Sulovsky; Tea
DERIVATION MATRIX IN MECHANICS – DATA APPROACH // Engineering review (Technical Faculty University of Rijeka), 43 (2023), 1; 295818, 9 doi:10.30765/er.1892 (međunarodna recenzija, članak, znanstveni)
Kožar, I., Plovanić, M., Sulovsky & Tea (2023) DERIVATION MATRIX IN MECHANICS – DATA APPROACH. Engineering review (Technical Faculty University of Rijeka), 43 (1), 295818, 9 doi:10.30765/er.1892.
@article{article, author = {Ko\v{z}ar, Ivica and Plovani\'{c}, Marina}, year = {2023}, pages = {9}, DOI = {10.30765/er.1892}, chapter = {295818}, keywords = {Derivation matrix, Boundary conditions, Lagrange polynomials, Finite difference method}, journal = {Engineering review (Technical Faculty University of Rijeka)}, doi = {10.30765/er.1892}, volume = {43}, number = {1}, issn = {1330-9587}, title = {DERIVATION MATRIX IN MECHANICS – DATA APPROACH}, keyword = {Derivation matrix, Boundary conditions, Lagrange polynomials, Finite difference method}, chapternumber = {295818} }
@article{article, author = {Ko\v{z}ar, Ivica and Plovani\'{c}, Marina}, year = {2023}, pages = {9}, DOI = {10.30765/er.1892}, chapter = {295818}, keywords = {Derivation matrix, Boundary conditions, Lagrange polynomials, Finite difference method}, journal = {Engineering review (Technical Faculty University of Rijeka)}, doi = {10.30765/er.1892}, volume = {43}, number = {1}, issn = {1330-9587}, title = {DERIVATION MATRIX IN MECHANICS – DATA APPROACH}, keyword = {Derivation matrix, Boundary conditions, Lagrange polynomials, Finite difference method}, chapternumber = {295818} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font