Pregled bibliografske jedinice broj: 1258995
Machine learning-based image analysis of optically detected neurons cultured in-vitro on high-density micro-pillar substrates and chips
Machine learning-based image analysis of optically detected neurons cultured in-vitro on high-density micro-pillar substrates and chips // 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019
Basel, Švicarska: Chemical and Biological Microsystems Society, 2019. str. 1424-1425 (poster, međunarodna recenzija, sažetak, stručni)
CROSBI ID: 1258995 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning-based image analysis of optically
detected neurons cultured in-vitro on high-density
micro-pillar substrates and chips
Autori
Bedalov, Ana ; Marciuš, Tihana ; Sapunar, Damir
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, stručni
Izvornik
23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019
/ - : Chemical and Biological Microsystems Society, 2019, 1424-1425
ISBN
978-1-7334190-0-0
Skup
23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences
Mjesto i datum
Basel, Švicarska, 27.10.2019. - 31.10.2019
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Fluorescence microscopy ; Image processing ; Machine learning ; Neurons
Sažetak
We present the novel method for machine learning- based image processing of optically detected neurons, grown as in-vitro cultures on top of the patterned high-density micro-pillar substrates and chips. We first validated the method with the control images of in-vitro cultures of dorsal root ganglion neurons grown on glass coverslips. Then, we showed that the method is able to reveal morphological differences between neonatal and adult dorsal root ganglion neurons, as well as the estimation of their in-vitro age. The method was optimized for fast image analysis of large image datasets of neurons.
Izvorni jezik
Engleski
Znanstvena područja
Temeljne medicinske znanosti, Kliničke medicinske znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Split,
Medicinski fakultet, Split
Profili:
Damir Sapunar
(autor)