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Abstract—Factor models are often used to infer lower-
dimensional correlation structures in data, especially when the
number of variables grows close to or beyond the number of data
points. The data covariance under a factor model structure is a
combination of a low-rank component due to common factors and
a diagonal or sparse idiosyncratic component. In this paper we
consider the estimation of the idiosyncratic component under the
assumption of grouped variables, which result in a block-diagonal
matrix. We propose a shrinkage approach which ensures the
positive definiteness of the estimated matrix, using either known
group structures or clustering algorithms to determine them. The
proposed methods are tested in a portfolio optimization scenario
using simulations and historical data. The results show that the
cluster based estimators yield improved performance in terms of
out-of-sample portfolio variance, as well as remarkable stability
in terms of resilience to the error in the estimated number of
latent factors.

Index Terms—high-dimensional factor model, idiosyncratic
component, thresholding, shrinkage, clustering

I. INTRODUCTION

With the growth of available data, high-dimensional covari-
ance matrices are becoming increasingly important in many
areas [1]. When the number of variables p is similar to, or
even greater than the number of data points or the length of
the time series 7T, the classical sample covariance estimator
is driven by noise and suffers from invertibility and stability
issues [2]-[4]. To address the problem, different approaches
have been proposed — some model-free [S]-[7], some based
on a factor model interpretation [8]-[10].

In this paper we are motivated by the correlation structures
in high-dimensional financial time series. It is a well doc-
umented fact that a small set of common factors (such as
macroeconomic shocks, interest rates, or the market factor
itself) drive the observed dynamics of a large number of
time series [11]. These factors form a low-rank covariance
structure which only depends on the estimated factor loadings
[8]. These loadings can be estimated via maximum likelihood
methods, principal components or even shrinkage approaches
[4], [12], [13]. Conditional on the pervasive factors, the
idiosyncratic components are either uncorrelated or affected
by specific factors (such as sectors, countries, or asset classes)
[9], [14]. These factors affect only a smaller number of vari-
ables (securities), resulting in a sparse covariance component.
Consequently, the covariance matrix in such a model is the

sum of a of low-rank component and a sparse component.
This type of covariance matrices can be estimated using a
principal components approach for the low-rank component
and a thresholding approach for the sparse component [15].

However, the thresholding approach does not take into
account the narrow factor interpretation, by which the id-
iosyncratic components are grouped depending on the specific
factors affecting them. As a consequence of these grouped
structures, the security returns may exhibit clustering, which
has been observed in previous studies [16]. Some approaches
include modelling these as cluster-specific factors [17]-[19],
or simply clustering the original security returns and using a
block structure as a shrinkage target [20]. On the other hand,
a simple approach which uses industry classification groups
for estimating the block-diagonal idiosyncratic component has
recently been considered, where the number of variables in
a single group does not exceed the number of data points
(time series length) [9], [14]. This approach uses a binary
mask which leaves the elements of the covariance matrix
belonging to the same group equal to the sample estimate,
and reduces all others to zero (resulting in a block-diagonal
matrix). However, in a high-dimensional case the number of
variables in a particular cluster is not guaranteed to be lower
than T — therefore such a simple approach does not guarantee
positive definiteness and will not be appropriate for all high-
dimensional scenarios.

To estimate the block-diagonal sparse component, we pro-
pose a method which introduces shrinkage within each esti-
mated block to ensure the positive-definiteness of the estimate,
even in very high-dimensional settings [5], [21]. The clusters
of the idiosyncratic component may either be known in
advance (for instance, using industry classification in security
return time series [4], [9]), or estimated using a clustering
procedure on the residual time series from the latent factor
model estimate. In such a setting, the proposed estimator
can be used without prior knowledge of the variable group
structures. The estimator can also absorb the pervasive factor
influence in case of misspecification of the number of factors
— for instance, when some latent factors are not taken into ac-
count by the low-rank component, they will be absorbed by the
block-diagonal component. This makes the proposed method
much more resilient to the problem of choosing the number of



latent factors than the classical thresholding estimators [15].
The proposed approach is tested in a simulation scenario and
applied to a portfolio optimization problem with historical
security return data. The results demonstrate the validity of
the approach and suggest that the block-diagonal idiosyncratic
component estimation improves the out-of-sample portfolio
risk in comparison to other covariance matrix estimators.

II. METHODOLOGY

In this paper we consider the observable random vector Y =
[Y1,...,Y,]’, with realizations Y; = [Y14,..., Y] at time .
The sample covariance matrix estimator is
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{Y1,..., Y7} are the observed realizations of the sample size
T. When the dimension p is allowed to grow at same, or
even higher rate than sample size 7', the sample covariance
matrix estimates are driven by noise [7]. Moreover, for p > T,
the estimates are singular, meaning that the matrix becomes
positive semidefinite and thus not invertible. Furthermore, the
eigenvalues of the estimates may greatly deviate from their true
values, according to the Marcenko-Pastur law [3]. To obtain
numerically stable estimates and reduce estimation noise, two
main approaches are commonly used: (i) model free estimators
and (ii) estimators based on factor models. Some of the most
commonly employed methods in both of these categories are
discussed below.

A. Model free estimators

1) Linear Shrinkage: One of the most commonly used class
of estimators are shrinkage estimators, especially the linear
shrinkage, which can be viewed as a weighted average of
the variance part and bias part of the covariance estimates,
where weights should optimize the bias-variance trade-off [1].
A common form of the estimator is a linear combination of the
sample covariance matrix ¥ and the shrinkage target matrix
¥, with sample variances & = [11, ..., 0pp]’ of the variables
on the diagonal:

~
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where « is a scalar parameter between 0 and 1. The method
recognizes extremely high or low coefficients in sample covari-
ance matrix and pulls them downward or upward, respectively,
to compensate [5]. The optimal shrinkage intensity «, should
minimize the expected value of the quadratic loss function

L(a) = [[aZ+ (1 - ) - Z|?, 3)

where X is the unknown population covariance. To estimate «
from sample data, we follow the well-established Ledoit and
Wolf [5], [21] procedure, the detailed explanation of which is
beyond the scope of this paper.

2) Thresholding: Covariance thresholding estimators are
permutation invariant methods encouraging sparsity with un-
known zero patterns [22]. For any 7 > 0, the generalized
thresholding operator is a function s, : R — R which, for all
z € R satisfies the following conditions [6]:

) |s+(2)] < |2

(i) s-(z) =0 for |z| <7,

(i) |sr(2) — 2| < 7.
These conditions are satisfied by several popular thresholding
functions. In this paper we consider two more advanced
functions:

s
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The estimated covariance matrix is then given by
1=
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The adaptive thresholding parameter [25] is of the form
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where 7 is a tuning parameter and @-j are estimates of 60;; =
Var[(Y; — ;) (Y; — pj)]. The value of 7 can be fixed or can
be data-driven and chosen through cross-validation [25]. To
ensure the positive definiteness, the value 7 should be chosen
on the space where the estimator is satisfying the condition
Amin(2E+) > 0. However, when 7 is sufficiently large, the
estimator becomes diagonal. Therefore, the desired interval is
(Tmin + €, Tmax) [15]

(6)

B. Factor models

Factor models assume that a small number of underlying
broad factors drives observed variable dynamics. In addition,
conditional on the common factors, the variables are either
uncorrelated or affected by narrow factors which affect only
some subsets of variables, forming the sparse idiosyncratic
covariance component [1].

For the random vector Y = [¥7, ...
the linear factor model is defined as

.Yp|" with mean p = 0,

Yie = bif; + e, ®)

where Y;; is the realization of the i-th variable, for i =
1,2,...,p, at the time ¢, for ¢t = 1,2,..T. Here b; is
K x 1 a vector of factor loadings, f; is K x 1 vector of K
common factors and e;; idiosyncratic component, assumed to
be uncorrelated with common factors.



Under the model, the covariance matrix X has the following
decomposition:

S =BX,B + =, ©)

where B = [by,...,b,) is the p x K factor loadings matrix,
Xt is the K X p covariance matrix of observed or estimated
factors and X, is the p x p covariance matrix of idiosyncratic
components. Here the first term L = B3 B’ is the low-rank
component, while S = 35, is the sparse component.

Some of the most influential work on estimating these types
of models includes the POET estimtor by Fan et al. [15]. The
estimator is defined as

(10)

where Xl > 3\\2 > ... > Xp are the eigenvalues and Bi,z’ =
1, ...p the corresponding eigenvectors of the sample covariance
matrix 3. The main assumption is that the first K eigenvalues
of 3 are spiked and grow at the same rate as number of
variables p, where p is not bounded. This ensures that the
estimated low-rank component is a valid approximation [15].
Theresholding is applied to the residual matrix S in order
to obtain a sparse component S;. The thresholding constant
T is obtained via cross-validation, by a grid search over the
thresholding constants and choosing the one which minimizes
the out-of-sample Frobenius norm. In the original work of
Fan et al [15], the SCAD thresholding method was used — in
this paper we also consider the adaptive lasso, and denote the
resulting estimates X 47, and X gcap.

Motivated by the intuition that the firms within the same
industries have higher correlations beyond common factors
[9], [14], we assume that the sparse component is a block-
diagonal matrix. To estimate such idiosyncratic correlation
structures in a high-dimensional setting where the cluster sizes
may outnumber the time series length, we propose a combined
shrinkage and clustering approach in the following section.

III. ESTIMATING THE BLOCK-DIAGONAL IDIOSYNCRATIC
COMPONENT

The simplest approach to estimating a block-diagonal id-
iosyncratic covariance is based on a pre-determined clustering,
for instance using industry classifications of the securities [9].
However, as mentioned before, two issues emerge. Firstly,
after extraction of common factors, the observed idiosyncratic
component may be driven by some other narrow factors
which are not known up front. For instance, the industry
classifications may not be the optimal grouping for the security
returns. Secondly, this simple approach does not guarantee
positive definiteness of the estimates, especially when the sizes
of particular clusters may outnumber the length of the time
series they are estimated from. For the purpose of resolving
these issues, we propose a combined approach including a
clustering procedure on the factor model residuals and a
shrinkage estimator on the blocks of the estimated block-
diagonal component.

A. Estimator definition

1) Clustering: To estimate the clusters when the group
structure is unknown, firstly the common part of the pervasive
factors is estimated via principal components, as in (10):

L=) X\bb, (11)

i=1

and the residuals are calculated:
&t = Yu — blf;, (12)

where Bi, i =1,...K are the first K eigenvectors of the sample
covariance matrix, and f; can be calculated as the principal
component realizations.

In our analysis, we apply the k-means procedure to estimate
the unknown clustering from the residuals, mainly because of
its simplicity and robustness — exploration of other potential
algorithms is out of the scope of this paper. The approach
differs from the POET estimator only in the idiosyncratic
covariance estimation, and thus its complexity is fairly similar.
In the clustering procedure we use a correlation-based distance
measure rather than the usual Euclidean distance, due to the
heteroscedasticity of the idiosyncratic components:

d(/e\“/e\]) =1- Tij, (13)
where r;; is the Pearson correlation coefficient between pairs
of idiosyncratic components €; and €;.

We denote the group membership information as a zero-
one p X p indicator matrix C (also known as a mask), where
the element C;; = 1 if ¢ and j are in the same group, for
1,7 € 1, ..., p. If the rows and columns of C (and consequently,
the p variables in the factor model (8)) are sorted according
to their cluster membership, then C is a block-diagonal
matrix. Without loss of generality, in the following notation we
assume that the variables are sorted according to their cluster
membership (this can also be done after clustering) and that
C is block-diagonal.

Let matrix C contain C;, Cs,,...,C, cluster blocks for each
of the M clusters. The imposed block-diagonal covariance s¢
obtained from the initial idiosyncratic estimate S is:

S¢ = (gijl(ij)GC) =SoC=

C, 0 ... 0 S 0 ... 0
o c ..o 0 S% ... 0
=So | . . | = ,

0 0 Cu 0 0 /S\CAI
R R (14)
where each sub-block is defined as (S = S;;1(;j)ec,.):
m € 1,..M, and o denotes the Hadamard element-wise
product.

2) Shrinkage: Clustering itself does not ensure positive
definitenes, as the cluster block size can be higher than the
sample size. Therefore, to ensure positive definitenes of the
estimator, we propose a shrinkage estimator which individually
treats each cluster block component S¢~, m € 1,..M.



For each block component C,,, we search for the optimal
shrinkage constant «,,, using the Ledoit and Wolf procedure
[5]. The block component is then defined as

8¢ = S + (1 = )8, (15)

where S€ is the diagonal shrinkage target with sample
variances on the diagonal. The resulting sparse component
estimate is

S 0 ... 0
N S¢= ... 0
s¢ =1 . S s (16)
0 0 SCu

and the final covariance estimate (including the low-rank and
sparse components):

Scs=L+8¢. (17)
In this paper, depending on the clustering information we
consider two cluster-shrinkage (CS) estimators:

« Industry based block-diagonal shrinkage estimator ZA)CS I
(denoted CS-I), which uses the industry classification for
obtaining cluster membership,

o Clustering based block-diagonal shrinkage estimator
Y csc (denoted CS-C), which uses the (k-means) clus-
tering algorithm for obtaining cluster membership.

To be comparable with the industry based block-diagonal
estimator and for the sake of simplicity, in this paper we use
a fixed number of clusters equal to M = 11. The problem
of estimating the number of clusters in financial data is an
important issue, but is not within the scope of this paper.

IV. EXPERIMENTAL RESULTS

To test the proposed methods we construct a simulation
scenario which follows the block-diagonal sparse component
assumption, and generate random realizations for the time
series on which the estimators are applied. We also use
a collection of historical data to verify the validity of the
approach in a real-world scenario.

A. Simulation procedure

We construct the low-rank component and the sparse com-
ponent independently and randomly. To generate the low-
rank component, we generate random factor loadings B =
[b1, ..., by)" from a uniform distribution with mean 0 and vari-
ance 1, and scale with a random p x 1 vector of individual time
series variances, multiplied by the the predefined percentage
of explained variance equal to 0.7 (meaning that the common
factors explain 70% of the total variance in the data). Finally,
we calculate the low-rank component as L = B’B.

Independently we construct the sparse component reflecting
the cluster structure. We generate random non-integer cluster
sizes lying in the predefined interval [Cnin, Cmaz] With the
total sum equal to p from the uniform distribution. The cluster
sizes are then rounded to integer values. We use ¢, = 10
and ¢4, = 300 to ensure that there are no singleton clusters,

and that there are large enough clusters to potentially cause
invertibility issues in the sample estimate. With the obtained
cluster vector, we generate the zero-one cluster representation
matrix C as described in III. The elements themselves are
generated by simulating a one-factor model within each cluster
and using the sample covariance estimates obtained that way.

For the simulation we fix the dimension to p = 800, number
of factors to K = 5, and simulate time series of length ,
T = 200 using the Student’s t-distribution with 5 degrees
of freedom, in order to replicate the heavy tailed property of
scurity returns. The simulations are repeated a total of 1000
times.

B. Historical data

We consider a collection of weekly observations' of the
MSCI World Index constituents from Jan-2005 to Sep-2020.
There are p = 1015 stocks in the dataset and all the
constituents have returns during the observed period. We also
collect the Global Industrial Classification standard (GICS)
sector codes for index constituents, to be used for determining
the group membership in the CS-/ estimator.

C. Measuring performance

1) Minimum variance portfolios: To evaluate our results we
construct minimum variance portfolios and assess the obtained
risks by using different covariance estimators. Specifically,
minimum variance portfolios are used in this context since
they only depend on the estimated covariance matrix, and
are commonly used to measure the performance of covariance
estimators [13], [26], [27].

The minimum variance portfolio w = [wy,...,wp]" is
obtained by solving a quadratic minimization problem:

minw'Xw st 'w=1,

w

(18)

where X is the covariance of the security returns. In this
paper we estimate the covariance matrix using the low-rank
and sparse covariance estimation procedure, where the sparse
component is estimated by different estimators: (i) Adaptive
lasso: X413 (ii) SCAD: Egcap; (iii) Industry based block-
diagonal shrinkage: ¥csr; and (iv) Clustering based block-
diagonal shrinkage: X¢csc.

To evaluate portfolio performance we calculate the out-of-
sample portfolio risk as the standard deviation of the portfolio
returns (also known as volatility):

WEW, (19)

where the portfolio weights w are obtained by solving (18)
with different covariance estimates.

For simulation data, portfolios are optimized using the
generated sample time series, and volatilities are calculated
using the population covariance ¥. When using historical data,
the population covariance is unknown, so a backtest approach
is applied with rolling time windows. At each time step,

'Weekly returns are used to avoid any synchronization issues in daily data
due to different time zones of the exchanges.



the portfolios are constructed using the covariance estimated
during the past 4 years of returns (a total of 4-52 = 208 weekly
data points). Then, the optimal portfolios are held for the next
year (52 weeks) and the portfolio volatility is calculated on
this out-of-sample future holding period. The portfolios are
rebalanced once a year.

2) Classification measures for non-zero elements: Since the
true sparse components are known in the simulation scenario,
we also measure the accuracy of identifying the true non-zero
and zero elements in the population idiosyncratic component.
We denote the classes of each element of the population
sparse matrix with O if the element is zero and 1 if the
element is non-zero. In our results we report accuracy, true
positive rate (TPR), true negative rate (TNR) and the F1 score,
some of the most commonly used classification performance
measures [28]. Since the idiosyncratic covariance is sparse
(and the classes are thus heavily imbalanced in favor of the
0-class), accuracy, TPR and TNR will be affected by the
class imbalance — we nevertheless consider them since they
reveal some specific traits of the estimators and the confusion
matrices they yield. To compare the overall performance of
the estimator, the F1 score is most reliable in an imbalanced
data setting. For more details on the classification performance
measures, see Sokolova and Lapalme [28].

3) Statistical inference: In addition to reporting the average
results for the above mentioned performance measures, for
the simulation study we also consider the number of exper-
iments in which the clustering shrinkage estimator (X¢csc¢)
outperforms (smaller out-of-sample volatility, higher classifi-
cation measures) the thresholding-based estimators (Xscap
and X 47). Let the number of outcomes in which the CS-C
estimator outperforms a benchmark for a given performance
measure be denoted by n, in a total number of n experiments.
For the proportion n, /n we apply a non-parametric paired
sign test, for the null-hypothesis that the probability of CS-
C outperforming the given benchmark for a given measure
is 0.5, and a one-sided alternative that the probability is
greater than 0.5. Under the null hypothesis, ny follows a
binomial distribution B(n,0.5), which is directly used to
calculate the corresponding p-value. In this case, two tests
are applied for each performance measure: (i) CS-C vs. AL,
and (ii) CS-C vs. SCAD, in order to test whether the proposed
approach yields statistically significant improvements over the
benchmark methods [19].

D. Results

Firstly, we consider the simulation results, the summary of
which is given in Table I. We observe significantly lower
portfolio risk for the CS-C estimator. For both benchmark
methods, the observed improvement is statistically significant
(with p-values effectively equal to zero) — specifically, we
report that proposed CS-C estimator outperformed the bench-
mark methods in all simulated cases.

The same pattern in the results is observed for the accuracy
of classifying non-zero off-diagonal entries in the idiosyn-
cratic covariance. However, these results are also affected

by the imbalance of class labels, due to the sparsity of the
idiosyncratic covariance. This is especially evident in the
results for TPR and TNR. Specifically, the adaptive lasso
(AL) estimator has a higher TNR (with a higher results in
almost all of the simulated cases), but a much lower TPR.
This is due to the fact that AL yields a much more sparse
estimate. In an analogy, the most sparse estimate would be a
diagonal covariance, which would have a TPR of 0 and TNR
of 1. The results for the benchmark methods quantify this
sparsity effect, as documented by a relatively high TNR and
lower TPR. The F1 score, which is a better measure of the
classification performance for imbalanced data, demonstrates
these shortcomings in the benchmark methods. The proposed
CS-C estimator outperforms them in all of the simulated cases.
This means that the proposed estimator has the best balance
in predicting non-zero and zero entries in the idiosyncratic
covariance.

TABLE I
Portfolio risk o and classification results for the considered estimators on
simulation data. The p-values of the paired sign test in comparison with the
proposed CS-C method are shown in parentheses below the results.

Estimator op Accuracy TPR TNR Fl1
SCAD 3.62% 90.1% 43.5% 97.9% 54.1%
(<0.01) (<001) (<0.01) (<0.01) (<0.01)
AL 3.82% 87.6% 13.6% 99.8% 23.5%
(<0.01) (<0.01) (<0.01) (~1) (< 0.01)
cs-C 1.13% 96.3% 79.2% 99.4% 85.9%

We also apply the considered estimators to the historical
data, described in Section IV-B. Different numbers of latent
factors are considered for all estimators, and the procedure
was repeated for all considered numbers of latent factors K =
1,2,...,20. The average out-of-sample portfolio risks for each
of these are shown in Figure 1.
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Fig. 1. Out-of-sample portfolio risk for cluster based estimators/\f]csc
and ¥ ¢ gy, in comparison with the thresholding based estimators X s5cap
and X 41, all obtained on historical market data and displayed for different
numbers of latent factors K.

Evidently, the volatilities are lower for both cluster-
shrinkage estimators than the considered thresholding bench-



marks. Moreover, the results demonstrate the remarkable sta-
bility of the out-of-sample volatilities for different estimates
of K, as opposed to those of the AL and SCAD estimators,
which deteriorate when the number of latent factors is underes-
timated. There seems to be no meaningful distinction between
the cluster based estimators CS-I and CS-C as both perform
similarly well in all out-of-sample historical scenarios. This
means that both the industry classification and the unsuper-
vised k-means clustering capture relevant security groups in
the observed data.

V. CONCLUSION

In this paper the performance of high-dimensional covari-
ance matrix estimators with low-rank and sparse components
are considered. The low-rank component is estimated using
principal components, while special focus is given to the
different sparse component estimation methods. A new ap-
proach based on the combination of clustering and shrinkage
is proposed, with a block-diagonal structure of the idiosyn-
cratic covariance component. Depending on the approach for
determining the groups, we derive two estimators — the CS-/
method based on known industry classification and the CS-
C method based on a k-means clustering procedure. A vital
part of the estimator is the addition of a shrinkage procedure
on each of the blocks in the idiosyncratic component, which
enables scaling such estimators to high-dimensional scenarios
in which the number of variables in some clusters may exceed
the number of data samples. The proposed approach was tested
in a simulation scenario, in which the results demonstrate
the ability of the block-diagonal estimators to identify the
true sparsity patterns in the idiosyncratic components, and
reduce the out-of-sample portfolio risk. Moreover, an empir-
ical backtesting study was performed on historical security
returns, where the proposed estimators were shown to exhibit
lower out-of-sample portfolio volatilities than the considered
benchmark thresholding methods. Moreover, the proposed
approach demonstrated a remarkable degree of stability and
resilience to the potential misspecification of the number of
latent factors.
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