Pregled bibliografske jedinice broj: 125859
Effect of Hardening Responses on Elastoplastic Behaviour of Shell Structures
Effect of Hardening Responses on Elastoplastic Behaviour of Shell Structures // Proccedings of the 4th International Congress of Croatian Society of Mechanics / Matejiček, Franjo (ur.).
Osijek: Grafika Osijek, 2003. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 125859 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Effect of Hardening Responses on Elastoplastic Behaviour of Shell Structures
Autori
Jarak, Tomislav ; Karšaj, Igor ; Sorić, Jurica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proccedings of the 4th International Congress of Croatian Society of Mechanics
/ Matejiček, Franjo - Osijek : Grafika Osijek, 2003
Skup
International Congress of Croatian Society of Mechanics(4 ; 2003)
Mjesto i datum
Bizovac, Hrvatska, 18.09.2003. - 20.09.2003
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
finite strain; small strain; kinematic hardening; isotropic hardening; finite element analysis
Sažetak
A more realistic material modeling in small as well as finite strain plasticity demands consideration of the constitutive models, where both isotropic and kinematic hardening are employed. The material hardening combined with the geometrical nonlinearity can significantly influence deformation responses of shell structures. The elastoplastic computational algorithms have been considered from different viewpoints in available literature [1, 3, 4, 7, 8] where the associative flow rule and the von Mises yield criterion are mostly applied.In this contribution, the effect of isotropic and kinematic hardening responses on the load-displacement behaviour of shell structures is analysed. The basic equations for finite strain plasticity and the material model of the small strain formulation are presented. The same isotropic hardening law is assumed for both formulations, while the Prager equation for kinematic hardening is used for the small strain model and the finite strain model employs a free-energy based kinematic hardening formulation. Integration algorithms at the material point level of a finite element formulation employ a closest-point projection scheme together with a consistent elastoplastic tangent modulus [4, 7]. Numerical examples demonstrate the robustness and numerical efficiency of the algorithms applied.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo