Pregled bibliografske jedinice broj: 1258323
APPLICATION OF MACHINE LEARNING MODELS IN MISCANTHUS X GIGANTEUS YIELD ESTIMATION
APPLICATION OF MACHINE LEARNING MODELS IN MISCANTHUS X GIGANTEUS YIELD ESTIMATION // Proceedings of the 49th International Symposium "Actual Tasks on Agricultural Engineering"
Opatija, Hrvatska, 2023. str. 193-201 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1258323 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
APPLICATION OF MACHINE LEARNING MODELS IN
MISCANTHUS X GIGANTEUS YIELD ESTIMATION
Autori
Brandić, Ivan ; Voća, Neven ; Leto, Josip ; Bilandžija, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 49th International Symposium "Actual Tasks on Agricultural Engineering"
/ - , 2023, 193-201
Skup
49th Symposium "Actual Tasks on Agricultural Engineering"
Mjesto i datum
Opatija, Hrvatska, 28.02.2023. - 02.03.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Miscanthus x Giganteus ; Machine Learning ; Yield estimation ; Artificial Intelligence
Sažetak
Miscanthus x giganteus (MxG) is a perennial crop that has high potential for energy production due to its favorable physical and chemical properties and high yield per unit area. To accelerate the process of yield estimation of MxG based on different input parameters, there is a possibility to apply different forms of nonlinear models such as polynomials, artificial neural networks (ANN), support vector machine (SVM) and random forest regression (RFR). In this paper, the aforementioned models were developed in order to predict the yield of Mxg per unit area with respect to the input parameters of plant height and number of shoots. The statistical analysis "goodness of fit" performed, showed high performance in the evaluation ; the coefficient of determination (R2) was used as the main parameter for the effectiveness of the models. Nonlinear models in the form of polynomials (R2=0.69), SVM (R2=0.65), RFR (R2=0.60) and ANN (R2=0.66) can estimate biomass yield MxG with satisfactory accuracy.
Izvorni jezik
Engleski
POVEZANOST RADA