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Abstract. Synthetic datasets, for which we propose the term synthsets, are not a 

novelty but became a necessity. Although they have been used in computer vision 

since 1989, solving the problem of collecting a sufficient amount of data for 

learning the neural network and offering the possibility of automatic annotation, 

significant development of methods and techniques for their generation belongs to 

the last decade. Nowadays, the question shifts from should you use them to how 

should you optimally create them. Motivated by the idea of discovering best 

practices for building optimal synthsets to represent dynamic environments (such 

as traffic, crowds and sports), this study provides an overview of existing 

synthsets in the computer vision domain, analyzing the methods and techniques of 

their generation: from the first low-res generators to the latest generative 

adversarial training methods, and from the simple techniques for improving 

realism by adding global noise to those meant for solving domain and distribution 

gaps. The analysis extracts 9 unique but potentially intertwined methods and 

reveals the general process of synthsets generation, consisting of 17 individual 

processes that you should follow and choose from, depending on the specific 

requirements of your future synthset. 
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1 Introduction 

 

Datasets have been one of the drivers of advances in computer vision, natural 

language processing, and other areas of artificial intelligence that rely on deep 

learning (Savva et al. 2019). Although there are many publicly available datasets 

(Fisher 2021), it is often necessary to build a new dataset due to the domain's 

specificity or to improve the existing one. A dataset's quality is not measured 

solely by its size but by various factors such as the diversity, integrity, and 

distribution of data (Nowruzi et al. 2019). 

 

Datasets are created by collecting and annotating data. Data can be existing, 

obtained by direct measurement, or non-existent, such that it needs to be 

generated beforehand. A set of images intended for supervised learning in 

computer vision must be annotated to make ground truth (GT) for model learning 

and evaluation. Annotation can be done at the image level by marking which class 

of images it belongs to (e.g. "player" or "ball") or, at the level of individual 

objects in the image (Fig. 1), by marking them with a bounding box or marking 

pixels belonging to an individual object (object segmentation). Annotating real 

images is slow and, in some areas, such as medicine, an expert process that 

requires the extreme attention of annotators and is subject to human error. All of 

the above makes creating a dataset time consuming and, therefore, expensive. 

 

 

Fig. 1 Marking objects with a bounding box (left) and object segmentation 

marking pixels belonging to an individual object (right) (Burić et al. 2020) 

 

A potential solution to this problem is a synthetic dataset (for which we propose 

the term synthset, used hereinafter). Synthsets are not a novelty, they have been 

used in computer vision since 1989 (Pomerleau 1989), but significant 
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development of methods and techniques for their generation belongs to the last 

decade. 

 

Synthetic data is defined in (Parker 2003) as data not obtained by direct 

measurement. The history of its application in machine learning is directly related 

to computer vision. It dates back to 1989, when synthetic data usage in 

autonomous driving (Pomerleau 1989) and optical flow analysis (Little and Verri 

1989) were first mentioned. Synthetic data solves the problem of collecting a 

sufficient amount of real data for learning the neural network and offers the 

possibility of automatic annotation, which remain the two primary reasons for its 

application. Synthetic data can be an unlimited source of data and can simulate 

situations we have not yet encountered. Also, it allows overcoming restrictions on 

the use of real data conditioned by respect for privacy or other regulations (Rubin 

1993). 

 

A 2016 study on the effectiveness of synthetic data (Patki et al. 2016) showed that 

in 70% of cases, using only synthetic data, the results achieved using real data 

could be reproduced. Also, the cost of creating a single synthetic image is much 

lower than the cost of creating a real equivalent, as well as the production time 

(Lange 2020). Once the environment for generating synthetic images and 

associated annotations has been prepared, the size of the synthset can be 

significantly increased at a negligible cost per additional image. 

 

According to Tripathi et al. (Tripathi et al. 2019), the generated synthetic data 

must be efficient, task-aware, and realistic. Efficiency results from a simultaneous 

reduction in the amount of data, to save on the resources needed for learning 

while increasing the samples' diversity. Aware of the task, synthetic data must 

create examples that help improve the target neural network's performance. In 

doing so, they must be visually realistic to minimize the domain gap present 

between real and computer-generated images (which can vary between non-

realistic and photorealistic) and thus improve generalization. If the domain gap 

within the synthset itself is not minimized, domain adaptation can be performed 

by mixing synthetic and real datasets in specific percentages (Pishchulin et al. 

2011), creating mixed (hybrid) datasets. 
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Within the field of computer vision, synthetic data, as pairs of images and 

associated annotations, are applied for different computer vision tasks such as 

object detection (Queiroz et al. 2010), pose estimation (Rosales et al. 2001), scene 

understanding (Satkin et al. 2012), action recognition (Ragheb et al. 2008), object 

tracking (Desurmont et al. 2006) and object classification (Carlucci et al. 2017). 

Synthetic data is predominantly used in the domains such as autonomous driving 

(Pomerleau 1989) and autonomous flying (Shah et al. 2018), surveillance (Taylor 

et al. 2007), and virtual reality (Lin et al. 2016). Outside the domain of computer 

vision, the application of synthetic data is important for neural programming and 

bioinformatics (Nikolenko 2019). 

 

Motivated by the idea of discovering best practices for building optimal synthsets 

to represent dynamic environments (such as traffic, crowds and sports), the 

objective of this study is to provide an overview of existing synthsets in the 

computer vision domain and to analyze the methods and techniques of their 

generation. 

 

The main contributions of this article are: 

• review of the development of methods and techniques for generating 

synthsets 

• systematization of synthset generation methods 

• systematization of synthset generation processes. 

 

The rest of the article is organized as follows: Section 2 provides the overview of 

the field, presented chronologically, in order of introduction and development of 

individual methods and techniques for generating synthsets, allowing a better 

understanding of their mutual influence. Section 3 analyses detected methods and 

techniques, systematizing synthset generating methods, the general process of 

synthsets generation and individual processes in it. It also includes the 

representation of generation methods in computer vision tasks and domains. 

Section 4 explains the conclusion. Suggestions are given for the implementation 

of experimental research to confirm the effectiveness of selected methods. 
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2 Review of synthsets generation methods and 

techniques 

 

The first known application of synthetic data for neural network learning was 

reported in the domain of autonomous driving (Pomerleau 1989). It was motivated 

by the large amount of data required to train the network, which was difficult to 

collect, especially in different driving conditions and with the possibility of 

changing the camera orientation. Therefore Pomerleau et al. created a virtual road 

generator. To train the neural network, they used two sets of roads simulated in 

different light conditions and with a realistic degree of noise: one set in 30x32 px 

resolution, representing the blue channel of the RGB camera, and the other in 

8x32 px, representing the depth map (D) obtained with a laser range finder. After 

40 epochs of training, the neural network achieved an accuracy of about 90% on 

the new simulated road images proving that it can operate the vehicle effectively 

"under certain field conditions". Using low-resolution synthesized images, it is 

difficult to distinguish between real and synthesized roads, which explains the 

model's high accuracy. 

 

In the same year, the first use of synthetic data in optical flow analysis was 

mentioned (Little and Verri 1989). Although authors did not report details of the 

synthesized images, they pointed out that they allowed them to compare optical 

streams generated by different algorithms with true projected velocity fields in 

synthetic images, which can be treated as GT. 

 

Inspired by Little and Verri (1989), Barron et al. (1994) generated four simple and 

one complex synthesized video sequence to evaluate optical flow analysis 

techniques' performance. The main advantage of synthetic inputs is the possibility 

of controlling the 2D motion field and scene properties, as well as the possibility 

of methodical testing during which it is possible to quantify performance. They 

also introduced post-processing of synthesized data by pre-smoothing, using a 

Gaussian kernel with a standard deviation of 1.5 px in space and time. This 

reduces temporal aliasing and the quantization effect. They noted that synthetic 

test data, compared to real ones, give better results with twice less smoothing. 
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Hamarneh (1999), using MATLAB, developed the first generator of spatially and 

temporally deformable shapes for medical image segmentation. It synthesizes 

sequences of 16 grayscale images at a resolution of 160x182 px, used to detect 

and segment similar shapes in 2D sequences. He introduced local noise, 

overlapping and touching occlusions, and missing frames into the synthesized 

sequences to harmonize them with real examples. 

 

Koenig and Howard (2004) created Gazebo, one of the first simulators designed 

for robotic navigation that allows learning with synthetic images generated in 

real-time in the virtual 3D world. Although created primarily as an exterior 

simulator, its basic weakness is the inability to simulate different physical soil 

models. Also, it does not support deformable objects and fluid dynamics and 

thermodynamics. 

 

Desurmont et al. (2006) built the first sports synthetic video set designed to track 

football players. It consists of 13 sequences lasting 400 seconds each, at a 

resolution of 1,400x1,050 px. The GT is available for player positions and the 

positions and parameters of 7 static and 3 pan-tilt-zoom (PTZ) cameras that 

simulate the standard conditions of a television broadcast of a football match. 

Despite the faithful camera positions, this set's main weakness is the lack of any 

realistic noise and image distortion. 

 

Taylor et al. (2007) noted the problem of the resources required to create a virtual 

world and decided to use the existing world of the commercial game Half-Life 2, 

which allows modifications by the player. Scripted controls support the execution 

of repeatable scenarios with adjustable parameters such as the positions of 

multiple synchronized PTZ cameras, lighting (time of day, artificial light sources) 

and sequences of various events (actions) in the scene. They built ObjectVideo 

Virtual Video (OVVV), a system for generating surveillance synthsets, rendering 

4 simultaneous sequences. They increased the realism of the synthetic images by 

adding pixel-level noise, video ghosting (by multiplying the image with a delayed 

copy of the previous signal), and radial distortion that simulates the camera lens's 

imperfection. Unlike real-world imaging, in which antialiasing is automatically 



7 

present due to imperfect optics, synthetic images' aliasing effect is reduced by the 

Super-Sampling Antialiasing Algorithm (SSAA) algorithm, rendering images at 

twice the resolution and smoothing blocks of 2x2 pixels while downscaling. When 

comparing real and synthetic data to evaluate tracking algorithms, the authors 

achieved similar results (measuring total error). 

 

Ragheb et al. (2008) generated the Virtual Human Action Silhouette (ViHASi) 

synthset for evaluating Silhouette-Based Human Action Recognition (SBHAR) 

methods. Using MotionBuilder, intended for the film industry, they combined 9 

3D models of virtual characters and 20 action classes and rendered them at 

640x480 px using up to 40 fixed cameras. In subsequent treatment, in addition to 

noise, partial occlusions are added (pairs of horizontal and vertical lines 0-20 px 

wide). Testing their own SBHAR method, they found that adding up to 15% of 

noise reduces recognition ability to 81.73% and adding up to 50% of noise to only 

25%. When applying occlusion, the lack of horizontal pixels significantly impacts 

recognition degradation (recognition drops to 20%) compared to the lack of 

vertical pixels (recognition drops to 69.70%). The main disadvantage of the 

ViHASi synthset is the lack of natural transitions between individual actions. 

 

Saxena et al. (2007) generated synthetic images for supervised learning, manually 

annotating the correct robotic grip's location on 5 classes of 3D models. They used 

a POV-Ray renderer to synthesize the images and concluded that the grasping 

algorithm's accuracy improves with the increase in graphical realism. During the 

generation of 2,500 images, they randomized different properties of objects: 

colour, size, and text (on book covers), effectively introducing a domain 

randomization (DR) method that Tobin et al. (2017) will popularize in 2017. They 

pointed to the time-consuming preparation of 3D objects, noting that the problem 

can be solved using 3D objects available on the Internet, with minor 

modifications. 

 

Baker et al. (2011) created a hybrid (a combination of real and synthetic images) 

Middlebury dataset for evaluation of optical flow analysis methods. 3Delight 

Renderman-compatible renderer allowed them to use linear colour space and 

ambient occlusion to approximate global illumination. GT is created by projecting 
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3D motion onto a 2D image, which is why the optical flow vector stored in a 

single pixel can represent the motion of more than one object, being is a weakness 

of this technique. The authors suggested that when creating future datasets for this 

purpose, different materials, lighting changes, atmospheric effects and 

transparency should be considered. 

 

The synthset generating method of Taylor et al. (2007), adjusting the camera by 

moving and rotating it so that only virtual passers-by (and not the road in front of 

the vehicle) are recorded, was used by Marín et al. (2010). They successfully 

detected pedestrians, proving that it is possible to learn models on a virtual set for 

successful detection on real scene shots. 

 

Kaneva et al. (2011) created two photorealistic synthsets, Virtual City and Statue 

of Liberty, to explore the robustness of feature descriptors in changing lighting 

conditions and scene views. They used a 3ds Max Mental Ray renderer with a 

Daylight system to illuminate the scene. It varies 5 times of the day, avoiding 

night, and the cameras vary the lens width from 50 to 200 mm. Comparing their 

Statue of Liberty set with the real one (photos of the Statue of Liberty), they found 

distinctly similar performance and ranking of descriptors. Significant degradation 

of performance is observed when the lighting changes, which the movement of 

shadows and reflections can explain due to the Sun's journey during the day. 

 

Butler et al. (2012), as well as their predecessors (Baker et al. 2011), warned of 

the problem of transparency in the creation of synthsets in the domain of optical 

flow. They used "Sintel", Blender's open-source animated film, to generate their 

MPI-Sintel synthset. They modified Blender's internal motion blur to give each 

pixel's exact motion vector (to be used as GT). Unlike hybrid set by Baker et al. 

(2011), MPI-Sintel contains longer sequences, larger motions, specular 

reflections, motion blur, defocus blur, and atmospheric effects. Authors advised 

caution when using this synthset for training and evaluating algorithms that 

depend on physics laws because animation does not necessarily follow them. 

 

Satkin et al. (2012) suggested using existing 3D model databases to solve the 

problem of understanding a scene from monocular images. They started from the 
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assumption that human environments are not random but consist of different sizes, 

shapes, orientations, and positions of objects in certain interrelationships, which 

can be learned if there is a sufficient amount of data. That is why they created a 

synthset of 500 images in the categories "bedroom" and "living room". They used 

Google SketchUp, which automatically calibrates the camera by marking a 

vanishing point and enables filling the scene with ready-made Google 3D 

Warehouse objects. Since they did not need photorealism, they used OpenGL to 

render objects and, in addition to RGB images, generated the corresponding 

object mask and surface normals. They used voxelization to automatically group 

related objects and estimate free space on the stage. 

 

Pepik et al. (2012) considered that the 2D bounding box is not an optimal 

representation for detecting objects containing moving parts. So they created a 

synthset by generating unrealistic, gradient renderings of 3D CAD models (cars 

and bicycles) from which they directly learnt HOG features. Their model 

automatically learns volumetric parts, which allowed them to determine the 

viewpoints and location of individual parts of the object. They compared real, 

synthetic and mixed datasets for model training and concluded that independently 

used synthset, due to feature statistics, behaves worst, but in combination with 

real, in all tested cases gives the best results. 

 

Haltakov et al. (2013) used the open-source driving simulator VDrift, which 

allows them to create different traffic scenarios, similar to real ones, to generate a 

synthset for multi-class image segmentation in the domain of autonomous driving. 

To render segmentation annotations, they used uniform colouring of textures of 

objects belonging to different classes. When rendering such images, they excluded 

lighting, shadows, reflections, antialiasing and mipmapping to get the correct 

colour value for each pixel. Their model achieved good results (89.0% accuracy) 

using only textured renders. The use of depth or optical flow features gave 

relatively poor results (80.6% and 75%, respectively). The combination of 

textures and depth or optical flow features gave the best results (91.2% and 

90.1%, respectively), and the combination of all features (texture, depth and 

optical flow) gave a slightly worse result (91.0%), suggesting that the information 

encoded in the depth and optical flow features is relatively similar. 
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Handa et al. (2014) created a benchmark for RGB-D visual odometry, 3D scene 

reconstruction, and simultaneous localization and mapping (SLAM) in the 

interior. When creating a synthset, which consists of images of the trajectory 

through two different scenes (living room and office), targeting photorealism, they 

paid special attention to light phenomena present in real images: specular 

reflections, shadows and colour bleeding. The office scene was created entirely 

procedurally but, due to the tool used (POV-Ray), the disadvantage of this is the 

impossibility of using a polygonal model to evaluate surface reconstruction. In 

addition to RGB, they also added noise to the depth map but omitted motion blur. 

 

Vázquez et al. (2014) continued work of Marín et al. (2010), noting that, despite 

the potentially high visual similarity between the synthetic and real sets, even the 

change in camera properties leads to dataset shift problem. To eliminate it, they 

developed a V-AYLA integrated framework, which uses 10% times less data from 

the real set than from the synthset to adapt the domain, achieving just as good 

detection results as when using a manually annotated real set for both learning and 

testing. 

 

Rozantsev et al. (2015) introduced algorithmic estimation of shading parameters 

based on a smaller sample of real images. By combining these parameters, using a 

simple 3D model of the object they are detecting, laid on a 2D background, they 

synthesize the desired number of learning images. Their key assumption is that 

the synthesized images must be as similar as possible to the real ones, but not 

necessarily in terms of realism but in terms of the features they contain, on which 

the detection method used relies. They confirmed that the synthset significantly 

improves the model's performance compared to training exclusively with realistic 

images but noted a point where too many synthetic images begin to act negatively. 

According to their experience, this point depends on the detection method, so for 

AdaBoost they recommend using 100, for DPM 50, and for CNN 15-20 synthetic 

images for each real one. 

 

Courty et al. (2014) built Agoraset, a synthset of realistically rendered virtual 

people viewed from 64 cameras, which, treated as particles, move in realistic 
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dynamic paths through 8 different scenes. The set is intended for tracking and 

segmentation in crowd analysis. Since they use between 200 and 2,000 pedestrian 

avatars, the novelty they introduced is storing each pedestrian’s identification tag 

in a 16-bit grayscale segmentation mask. They emphasized the need for synthset 

realism so that what is learned can be transferred to real situations. The 

disadvantages of Agoraset are the limitation of variations in the geometry through 

which pedestrians move, the small number of textures used and the time-stretched 

motion capture (mo-cap) of the walking animation to adjust the speed of each 

pedestrian, which leads to unrealistic dynamics of movement. 

 

Sun and Saenko (2014) challenged previous conclusions about photorealism's 

necessity in the domain of object detection. By building two synthsets in parallel, 

the first with realistic renderings of 3D objects on a randomly selected 2D 

background from the ImageNet dataset, and the second with grayscale renderings 

on a white background, equally successful detection results were obtained using a 

fast adaptation approach based on decorrelated features. Their method is 

successful because it rejects "background statistics", retaining only the shape and 

texture characteristic for the entire category, but not for an individual object. 

 

Hattori et al. (2015), in the domain of video surveillance, built a massive (2.5M 

images) synthset that aims to adjust the surveillance system for a new location 

using a familiar geometry layout, virtually reconstructed, and 36 different virtual 

pedestrian models with 3 possible walk configurations. They paid special 

attention to the perspective distortion of the camera because when using cameras 

with a wide field of view and a small focal length, it is necessary to learn to 

recognize people's distorted images. 

 

Veeravasarapu et al. (2015) analyzed impact of various factors (geometry, 

appearance, lighting, physics, environment, camera, rendering parameters, etc.) 

during the construction of virtual scenes on individual features. They concluded 

that the influence of synthset's photorealism on model performance (for testing on 

real data) depends primarily on the closeness of distributions between synthetic 

and real data. To perform the analysis, they built their own synthset in Blender, 

and since they introduced rain, which can significantly affect the appearance of 
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two sequential frames due to the effect of blurring individual parts of the image, 

they noted the implementation of the rain is not physically correct and does not 

affect the change of the visual properties of the surfaces in contact with it. 

 

Su et al. (2015) built a large synthset (over 2.4M images in 12 classes) that they 

combined with the real set (12K images) to estimate the viewpoint on 2D images 

using CNN. Synthset was created by laying rendered ShapeNet 3D models on 2D 

backgrounds from the SUN397 database, using alpha blending to prevent 

classifiers from learning unrealistic patterns at the junctions of rendered 3D 

objects and the background. 

 

Peng et al. (2015) noted that most freely available 3D objects often lack realistic 

textures, appropriate poses, and backgrounds. To test the effect of these factors 

on CNN detectors' quality, they built their own synthset. They proved that if CNN 

learns on synthset tuned for the target task, it will show a high degree of 

invariance with respect to these factors, but if it was previously trained for 

classification on, i.e. ImageNet dataset, it learns better when the mentioned factors 

are explicitly stimulated. 

 

Richardson et al. (2016) used a morphable 3D facial model to generate a 

relatively photorealistic synthset that teaches ResNet-based CNN to reconstruct a 

textured 3D facial model from a single photograph. Relative photorealism was 

achieved using the Phong shading model, which neglects the skin's physical 

properties, such as subsurface scattering (SSS). Still, the reconstruction's success 

proved that photorealism is not crucial for the CNN model's quality. 

 

Mueller et al. (2016) built a hybrid UAV123 set as a benchmark for tracking 

unmanned aerial vehicles (UAVs) in low flight. It consists of 123 sequences and 

112,578 images. Of these, 8 sequences (in different virtual environments) were 

synthesized using Unreal Engine 4 (UE4) without any post-processing effects. 

Simulation within UE4, which is used to generate synthetic images, can also be 

used for the on-line evaluation of various tracking algorithms. 
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Movshovitz-Attias et al. (2016) analyzed the impact of photorealism on synthset 

quality. For this purpose, they built two synthsets of rendered cars: RenderCar 

(819,000 images of rendered 3D models subsequently laid on randomly selected 

backgrounds) for learning, and RenderScene (1,800 images of renderings of 3D 

models in the associated 3D scene) to validate the CNN detection model. Varying 

the complexity of materials and lighting, they concluded that complex materials 

and lighting, the unity of the 3D scene (compared to the combination of 3D 

models and 2D backgrounds) as well as the quality settings of the renderer, 

contribute to the quality of the synthset because they take into account elements of 

3D model interaction with the scene such as shadows and reflections. A practical 

disadvantage of this approach is the significant rendering resources it requires, 

limiting the size of such synthsets and making them unusable for training. But 

adding even a small amount of photorealistic synthset to the real one gives better 

results than using a combination of different real learning sets because it can 

introduce features not present in the real set and thus encourage the model to 

generalize better. The problem of the quantitative threshold indicated by Johnson-

Roberson et al. (2017) is proposed to be solved by a larger number of 3D models, 

but they do not consider the possibility of their procedural creation. They 

concluded there is no significant difference no matter what form of occlusion is 

used (from monochrome squares to patches of photographic textures of different 

shapes) but that the effect of occlusion depends solely on the class of the object. 

The authors also emphasized the importance of aligning the synthset for training 

with the statistics of the angles at which the objects were recorded in the real set. 

They introduced a variable camera shutter speed and a vignette in the synthset 

production process. Images are initially recorded in PNG format but are 

subsequently compressed in JPG because, although compression is not visually 

noticeable, it has been observed to affect classifier performance. Their CNN uses 

a weighted SoftMax (wSM) loss function that does not allow the model to 

randomly "guess" a class but requires that similar views of the 3D object have 

similar probabilities, thus achieving a more stable prediction. 

 

Wood et al. (2016) generated 1M synthetic eye images using Unity and a 

procedurally animated morphable eye model for gaze estimation purposes. The 

eye model was created by 3D scanning of the eye area in high resolution (5M 
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points) and reduced to 229 vertices by subsequent retopologization. Since ray-

tracing was not available in Unity at the time of their work, and the realistic 

display of the eyeball depends on the use of refraction that cannot be achieved by 

standard rasterization, the authors simulated physically correct refraction using a 

fragment shader (a GPU program that processes each pixel during rasterization). 

Also, the scene is illuminated with a high dynamic range (HDR) image lighting. 

 

Veeravasarapu et al. (2016) continued exploring the impact of photorealism. Their 

synthset is built using the stochastic generation of 3D scenes. During rendering in 

Blender, utilizing the Monte Carlo method, they varied the number of samples per 

pixel and concluded that training different CNN architectures is invariant to the 

number of samples after 40 samples per pixel even when the resulting image 

contains visible noise. Analyzing the network's performance on different parts of 

the image, they noticed that the most problematic are the boundaries of 3D objects 

where, compared to real images, the expected effects are missing (colour 

bleeding, penumbra). Therefore, they suggested modelling the appropriate effects 

of sensors and lenses, and with this aim, they introduced a chromatic aberration 

effect in post-processing. 

 

Shafaei et al. (2016) built a synthset in the domain of autonomous driving, using, 

due to legal issues, an unnamed computer game. Driven by the limitations 

imposed by commercial games, they proposed cooperation with game developers 

to make better use of games' resources in computer vision in the future through a 

more accessible interface. 

 

Richter et al. (2016) solved a problem pointed out by Shafaei et al. (2016) using a 

detouring technique. They inject a wrapper between the operating system and the 

game, which allows them to record, modify, and reproduce rendering commands. 

This way, they mark different resources in the rendering process (geometry, 

textures, shading programs) and track them from frame to frame. Using rule 

mining, which suggests linking the tags thus obtained to the content of the 

rendered images, and a human annotator who validates them, they are able to 

annotate at an average rate of 7 seconds per image. The authors stated that some 

of the key advantages of using computer games to extract synthsets are the 
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natural arrangement of objects on scenes, realistic textures, realistic movement of 

vehicles and characters, and the presence of small objects that enrich images with 

details, contributing to the overall realism. 

 

Chen et al. (2016) found that clothing textures' diversity is a key ingredient for 

effective pose estimation, with sufficient data to train the neural network. Using 

the morphable model (SCAPE), they generated 10,556 different human 3D 

models. They then collected a large number of images of sportswear on a simple 

background that aids their segmentation. They segmented 1,000 different 

garments for the upper and lower body from such images, which they used as 

textures in combination with a previously prepared set of textures for heads, 

hands, shoes and skin, the colours of which they also randomize. They applied 

poses from the CMU MoCap dataset to 3D models and rendered them on one of 

795 realistic 2D backgrounds. Thus, they generated a total of 5,099,405 images 

for training and included a selection of 1,574 in the Human3D+ synthset. 

 

Ros et al. (2016) built SYNTHIA synthset intended for segmentation in the 

domain of autonomous driving and with it introduced a simulation of the seasons 

that drastically changes the appearance of the images, increasing the realism of 

exterior scenes. To train a CNN model, they combined realistic and synthetic 

images using Balanced Gradient Contribution (BGC) which builds batches from 

both domains in a predefined ratio and thus uses synthetic images for 

sophisticated regularization. Although the images are rendered at 960x720 px, 

they are used for training at a resolution of 180x120 px to save memory and speed 

up training. The negative consequence of this is the loss of recognizability of 

smaller objects such as traffic signs and roadside poles. Given the mode of 

creation and automatic annotation, the main disadvantage of this synthset, which 

is also pointed out by the Tian et al. (2018), is the impossibility of using it for 

other tasks in computer vision (such as tracking and object detection). 

 

Gaidon et al. (2016) corrected a flaw observed in the work of Ros et al. (2016) by 

adding GT for object detection and tracking to segmentation while building a 

Virtual KITTI synthset. They concluded that previous synthsets in the domain of 

autonomous driving are not detailed enough (from the layout of objects to the fact 
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that they do not contain licence plates), so, during the construction of 3D scenes, 

they adapted the content to the reference video set (KITTI), to minimize the gap 

between synthetic and real sets. They see the advantage of synthsets in the 

possibility of analyzing the impact of a single factor (Latin: ceteris paribus) and 

what-if analysis, especially for rare events. In GT, they introduced the visibility of 

an individual object in fog. 

 

To simultaneously predict the volumetric occupancy of a 3D scene and an object 

category from a single depth image, Song et al. (2017), using Planner5D, built 

SUNCG, a synthset consisting of 130,269 images based on 45,622 manually 

designed complex interiors, with realistic furniture layouts. Like Satkin et al. 

(2012), they used voxelization, but they voxelized each object used to compose 

the scene separately and only once to speed up the process. Since their SSCNet 

model uses only depth information, without colour, objects such as windows 

represent a problem, as well as objects with similar geometry but different 

function. 

 

Zhang et al. (2017) used modified SUNCG (Song et al. 2017) 3D scenes to build 

their MLT synthset. They explored the impact of realism on interior scenes by 

rendering them using a combination of an Open GL renderer and a physically-

based Mitsuba renderer with a Path Space Metropolis Light Transport (MLT) 

integrator, with different types of interior and exterior lighting. They concluded 

that increased realism significantly affects the quality of prediction. 

 

Veeravasarapu et al. (2017) introduced generative adversarial training in the 

building process of 3D scenes intended for photorealistic rendering of synthsets. 

The 3D scene is treated as a parametric generative model that varies in the 

direction of real images, using a generative adversarial network (GAN) to change 

the layout of the objects on the stage and the lighting. The dynamics (movement 

of vehicles and pedestrians) are neglected, and the intrinsic attributes of 3D 

objects (shape and texture) are not varied. 

 

Dosovitskiy et al. (2017) used UE4 to develop CARLA, a simulator in the domain 

of autonomous driving. The authors noted that generalization to new weather 
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conditions is easier to achieve than generalization to new cities. This can be 

explained by the fact that the CNN model was trained using images of only one 

city (the other was reserved for testing) but under different weather conditions 

(which affected the change in lighting and noise in the images and contributed to 

greater variability). The same problem is present in other synthsets that prefer 3D 

models of buildings of specific architectural styles. 

 

Unlike McCormac et al. (2017), who randomly sampled scenes from SceneNet 

and objects from ShapeNet, Jiang et al. (2017) learnt the grammar of the scene 

from SUNCG (Song et al. 2017) and ShapeNet and described it in Spatial And-Or 

Graph (SAOG). By sampling SAOG, different scene configurations were created. 

The authors used Mantra PBR renderer and encounter the problem of selecting 

rendering parameters since lower quality settings (fewer samples per pixel) did 

not allow them to synthesize images useful enough to surpass state-of-the-art 

models. 

 

Tobin et al. (2017) were the first to explore domain randomization systematically. 

They concluded that with enough variability in the simulator, the real world can 

look like just another variation to the model. Using a non-photorealistic renderer 

built into the MuJoCo Physics Engine, they generated hundreds of thousands of 

images of randomized simple geometric objects that vary in shape, scene position, 

unrealistic textures, lighting, and camera position. The created synthset were used 

to train the VGG-16 object detection network. They indicated a significant effect 

of texture when using smaller datasets: the performance of 10,000 images using 

only 1,000 different textures corresponds to the performance of a set of only 1,000 

images using all available textures. In that sense, when randomizing, the 

randomization of textures is more important than the position of objects. 

 

Varol et al. (2017) built SURREAL, a massive (6.5M image) synthset intended 

for pose estimation. To ensure realism, synthetic bodies were created using the 

human SMPL 3D model, whose parameters were adjusted by the MoSh method 

using 3D data of mo-cap markers. They added the clothes texture to such 3D 

bodies, put them in poses and rendered them over 2D background images. Despite 

a large number of synthesized images, the authors concluded that, due to the high 
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variability of the synthset, good results could be achieved with as little as 55K 

images. They also found that increasing clothing variation positively affects 

model performance, which speaks in favour of domain randomization (Tobin et 

al. 2017). For mo-cap, the authors recommended matching the distribution of the 

target set. 

 

Zimmermann and Brox (2017) applied 39 actions from the mo-cap animation 

library in the Mixamo animation tool to 20 different virtual characters producing a 

Rendered Handpose Dataset, focused on synthetic hand models, meant for 

training CNNs using RGB data exclusively. When selecting 2D images of cities 

and landscapes, which they randomly used for the background, they made sure 

that background images did not contain people because their presence negatively 

affects the model. 

 

Richter et al. (2017) criticized predecessor techniques for collecting data from 

commercial games (without the ability to access code): primarily the inability to 

generate annotations at the speed at which the game is performed (in real-time) 

and the inability to segment at the instance level. They developed an approach that 

integrates dynamic software updating and bytecode rewriting, with which they 

introduced visual odometry (ego-movement) into annotations. They added snow to 

the atmospheric conditions and recorded its negative impact on the optical flow 

(due to the imposed movement in the foreground) and detection (because it 

reduces the contrast). 

 

Dwibedi et al. (2017) criticized Georgakis et al. (2017), stating that the step of 

semantic segmentation does not generalize well in new scenes. Therefore, they 

proposed a new, simpler approach to ensure only patch-level realism for detector 

training. They cut objects from 2D images (using Big Berkeley Instance 

Recognition Dataset), employing CNN for segmentation, and pasted them on a 

random background (from UW Scenes dataset), without considering the size, 

lighting or composition of the scene. The key to their method is how the pasted 

objects are blended with the background. They trained the model using 3 different 

blending modes: no blending, Gaussian Blurring and Poisson Blending. In this 
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way, the model becomes invariant to blending, which increases performance (AP) 

by 8%. 

 

Müller et al. (2018) considered ready-made games to be impractical for use as a 

synthset's generators due to extremely limited customization options. They 

preferred modern, fully adaptable game development tools that are characterized 

not only by photorealism but also by realistic physics simulation, significantly 

reducing the gap between simulated and real worlds. Using UE4, they created 

their own simulator (Sim4CV) intended for autonomous driving and flying. The 

simulator contains a large selection of PBR (Physically-Based Rendering) 

textured high-poly 3D objects used as building blocks and generates frames at a 

resolution of 320x180 px to reduce latency to a minimum, which is essential for 

end-to-end training. 

 

Tsirikoglou et al. (2017) used detailed 3D geometry, physically based materials, 

Monte Carlo based rendering, and faithful simulation of camera optics and sensors 

to produce one of the most realistic synthsets for autonomous driving applications. 

Their method combines the procedural generation of a unique world for each 

rendered frame with distributed cloud-based rendering, using an infrastructure 

designed for the film industry. They optimized the computationally demanding 

generation of unique worlds by generating only the geometry visible to the camera 

directly or in reflections and shadows. They emphasized that photorealism is 

difficult to achieve using insufficiently detailed geometry or physically inaccurate 

transport of light and identified 5 key goals for achieving realism: overall scene 

composition, geometry, lighting, material properties and optical effects. In the 

experiments, they trained DFCN with only 25,000 synthetic images (in the 

predecessor range) for semantic segmentation and achieved 36.93%, compared to 

GTA V (Richter et al. 2016) (31.12%) and SYNTHIA (Ros et al. 2016) (20.7%), 

concluding that it was worth focusing on maximizing variation and realism. 

 

Tremblay et al. (2018a) continued work of Tobin et al. (2017) research on the 

potential of domain randomization (DR) as a simpler, cheaper alternative to 

generating extremely photorealistic synthsets. They built their DR synthset by 

randomly placing an arbitrary number of 3D objects of interest (cars, in their case) 
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on a random 2D background and introduced a new component, flying distractors, 

in the form of various simple geometric bodies. All objects on the scene (both 

those of interest and distractors) are textured using random textures, which is a 

key novelty. 

 

After the unrealistic DR synthset (Tremblay et al. 2018a), Tremblay et al. (2018b) 

created the realistic Falling Things (FAT) synthset, using the method of physically 

simulating dropping 3D objects onto a scene presented in the work of McCormac 

et al. (2017). FAT is intended for the detection of objects in the household, and 

the authors used the measured statistics to quantitatively confirm the optimal 

distribution of variability achieved thanks to the applied method. Tremblay et al. 

(2018c) used FAT for pose estimation for semantic robotic grasping of household 

objects and showed that a combination of photorealistic images and domain 

randomization could achieve sufficient dataset variability to use such a trained 

model in a real environment, without additional tuning. Measuring the effect of 

dataset size, they found that a synthset based solely on domain randomization 

achieved the best result when using 300K images (66.64 AUC), an exclusively 

photorealistic set with 600K images (62.94 AUC), and when a combination is 

used in such a way that no set is represented by less than 40%, the best result 

(77.00 AUC) is achieved already with 120K images. 

 

Texture, highlights and shading are some of the visual signs that allow people to 

understand the material from which an object in the image is built. Deschaintre et 

al. (2018) looked for a way to extract 4 image maps (diffuse albedo, specular 

albedo, specular roughness and normals) from the image, using a neural network, 

and then, using the Cook-Torrance BRDF shading model, recreate object's 

material during rendering. For this purpose, they built Synthetic SVBRDFs And 

Renderings synthset, varying 800 spatially-varying bi-directional reflectance 

distribution functions (SVBRDF) in Allegorithmic Substance procedural 

materials created by graphic artists from the film and video industry. Although it 

achieves good results, this method's disadvantage is the use of input images 

exclusively from the frontal view, which does not show the behaviour of 

reflections at grazing angles, so the Fresnel effect's reconstruction cannot be 

learned. 
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Wrenninge and Unger (2018) followed Tsirikoglou et al. (2017) and generated an 

equally photorealistic synthset, Synscapes. They introduced scene metadata into 

annotations, which describe all the scenes' properties for each generated image, 

and used the OpenEXR format to store the images. They found that motion blur 

(as a consequence of the observer's speed) and time of day (Sun's height) are the 

parameters that most affect the network's predictive performance. Motion blur is 

particularly interesting because it increases with the speed of the vehicle on which 

the camera is located and blurs the features in the image that remain recognizable 

to humans but seem significantly different to CNN compared to the previously 

learned. Sun approaching the horizon reduces the contrast in the image, but the 

image is not necessarily darker due to the auto-exposure used. The strong 

shadows disappear, without which it becomes more difficult to distinguish the 

learned features. The authors emphasized that there is no indication that neural 

networks can undo domain shifting on their own, and therefore realism should be 

built into synthsets when generating them. 

 

Mayer et al. (2018) analyzed different ways of constructing synthsets in the 

domains of optical flow and stereo disparity: procedural scene randomization and 

manual geometry modelling. A combination of manual scene compositing and 

manual geometry modelling was excluded as an option because it results in less 

data generated using the same effort. However, they did not consider the 

possibility of both procedural modelling and scene compositing that can reconcile 

both approaches. They found that training using multiple datasets is most 

effective when conducted in stages, using datasets separately and subsequentially. 

Authors also found that in some domains, such as optical flow, realism is not 

necessary - forcing realism with complex scene lighting will not necessarily help 

even when test data is realistically illuminated. They also emphasized the 

importance of the moment the data is presented to the neural network: the early 

learning phase prefers simpler data and the later more complex. 

 

Prakash et al. (2019) presented Structured Domain Randomization (SDR), which 

considers the structure and context of the scene. Unlike DR (Tremblay et al. 

2018a), which places objects and distractors randomly according to a uniform 
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probability distribution, SDR does so according to the probability distribution 

arising from a specific problem. In this way, SDR allows the neural network to 

consider the area around the object, as a context, during detection. In the author's 

formulation, SDR includes 3 components: global parameters, one or more 

context-representing curves, and objects arranged along those curves. The SDR 

approach balances between extreme photorealism and non-realism, characteristic 

for DR, producing quite realistic images but primarily containing great diversity. 

Unlike DR, where performance is saturated around 50K images (Tobin et al. 

2017), SDR achieves saturation with 10K images. That is why SDR can be used 

to initialize the network when there is not enough annotated real data. Tremblay et 

al. (2018a) showed that lighting is the most important parameter for DR. 

However, when using SDR these are context, saturation and contrast, with 

saturation indicating the importance of matching textures between the two 

domains. 

 

The use of SDR instead of DR is supported by the results of Dvornik et al. (2018), 

who, in the domain of object detection, conducted experiments by placing objects 

cut from 2D images at different positions on 2D backgrounds. They concluded 

that detection accuracy decreases significantly when objects are located at 

unrealistic positions. This points to the fact that the visual context becomes a 

crucial information source whenever visual information is corrupted, ambiguous, 

or incomplete. 

 

Li et al. (2019) started from the assumption that the complexity and diversity of 

the real world cannot be realistically replicated in a virtual environment. They 

advanced the idea of laying 3D vehicle models on background photos from Abu 

Alhaija et al. (2018) using real road videos instead of photos, combined with 

LiDAR data to produce accurate depths maps. This approach allowed them not 

only to fit 3D objects into any plane but also to generate a realistic flow of vehicle 

traffic and the dynamics of pedestrian movement. As part of the pre-processing, 

they removed moving objects, closed the holes, replicated the illumination and 

improved the textures. The resulting images, produced by the PBRT renderer, are 

photorealistic and form their AADS synthset. The problems of this approach, 

compared to the use of fully virtual worlds, are the limited field of view of LiDAR 
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due to which, although there is a 3D scene environment, the point of view on 

synthesized images can not deviate significantly from the original, and the 

inability to vary lighting and weather conditions. 

 

In the domain of visual reasoning applied to video, Girdhar and Ramanan (2019) 

built a CATER synthset designed to tests the ability to recognize compositions of 

object movements that require long-term reasoning. The authors concluded that 

for higher-level tasks, such as action recognition, current neural network 

architectures are usable with a sufficiently large learning dataset, but that mid-

level tasks, such as object tracking, present a major challenge in the case of long-

term occlusions. 

 

Wang et al. (2019c) built the IRS synthset to evaluate stereo disparities in interior 

scenes. They paid special attention to shaping light effects (change of brightness, 

reflection and transmission of light, lens reflection), considering them important 

for applying the learned model in a real environment. In doing so, they used a 

deferred rendering path, optimized for 3D scenes with a large number of lights 

that require a high level of lighting fidelity. 

 

Wang et al. (2019b) used GTA V's realism to create a GCC synthset designed for 

crowd counting. Their predecessors (Richter et al. 2016; Johnson-Roberson et al. 

2017; Richter et al. 2017) did this without interfering with the game, but since 

GTA V does not contain the necessary crowd scenes, the authors were forced to 

create their own scenes using an add-on based on the Script Hook V library. The 

additional problem is that GTA V does not support more than 256 people on the 

scene, which is why they separated the target areas into multiple scenes, rendered 

them separately and then merged the images. This way, they brought to the scene 

a total of 7,625,843 differently animated and mutually varied virtual characters. 

The number of characters in individual images varies between 0 and 3,995, and an 

average of 501 are visible. To adapt the domain, they introduce the Structural 

Similarity Index (SSIM) in the traditional Cycle GAN, which allowed them to 

retain local texture and structural similarity. According to the authors' examples, 

the primary role of domain adaptation was colour correction (reduction of 
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saturation and change of image tone), which could be more easily achieved using 

the appropriate 3D look-up table (LUT), mapping one colour space to another. 

 

Chociej et al. (2019) created the ORRB (OpenAI Remote Rendering Backend), a 

simulator designed to visually train robots. ORRB is focused on domain 

randomization and optimized for use in the cloud: 88 rendering servers, each using 

8 V100 GPUs, producing 3,438 frames per second, allowing for hyper-production 

of massive synthsets. The authors introduced ambient occlusion as a post-

processing effect, in contrast to Baker et al. (2011), where it was initially used in 

rendering. They also pointed to the importance of the seed they used to make 

randomization and rendering deterministic to the extent that the game 

development tool (Unity) allows it. Determinism is extremely important in 

creating synthsets because it allows reproducibility and thus controlled changes of 

individual parameters that affect the outcome of randomization. 

 

Nowruzi et al. (2019) investigated object detectors' performance under conditions 

of a limited amount of real data. They used existing synthsets (Wrenninge and 

Unger 2018; Richter et al. 2017; Dosovitskiy et al. 2017) from the domain of 

autonomous driving, asking how much real data, compared to synthetic, is 

needed. Using only real sets, they concluded that removing as much as 90% of the 

set has a smaller negative effect on detector reliability than removing the next 5%. 

This may explain the adequacy of using the minimum real set (relative to 

synthset) to improve model performance and recommended optimal ratio of 15-20 

synthetic images for each real one from (Rozantsev et al. 2015). 

 

Hinterstoisser et al. (2019) offered a solution in the same domain when real data is 

not available at all for specific training. They showed that neural network-based 

object detectors (Faster-RCNN, R-FCN, MaskRCNN) could be efficiently trained 

using exclusively synthetic data by freezing the layers responsible for extracting 

features of generic models initially trained on real data. This method is successful 

because the initial feature extractors (InceptionResnet and Resnet) are already 

trained enough that, when applied to synthetic data, they act as "projectors" and 

result in features that are close to the real domain. 
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Wang et al. (2019a) researched the detection of products in vending machines. For 

domain adaptation, as well as Atapour-Abarghouei and Breckon (2018), they used 

style transfer to make the rendered objects in their synthset more realistic. In 

doing so, they applied style transfer exclusively to individual objects of interest, 

omitting the environment because Cycle GAN changes it too much. The shape of 

individual products in vending machines can differ significantly due to the 

deformation of the packaging, which is why they simulated it by deformation of 

the geometry, randomizing the surface points' positions. The authors used 

PVANET, SSD and YOLOv3 for detection. They achieved the best results with 

PVANET (95.54%), while SSDs (90.02%) and especially YOLOv3 (62.33%) had 

problems with larger occlusions and objects' shape distortion that results from the 

use of a wide-angle camera. 

 

Kar et al. (2019) created a Meta-Sim framework designed to generate synthetic 

urban environments for autonomous driving. They used SDR (Prakash et al. 

2019), but learned distribution from real data, relevant for solving a specific task. 

Their generative model uses Maximum Mean Discrepancy (MMD) metrics to 

compare distributions, which allows them to optimize scene parameters at each 

individual object's level. This way, they retain the structure generated by 

probabilistic grammar but transform the distribution of attributes. They did this 

because they believed that the problem of domain adaptation consists of two 

components: the appearance (visual style of objects), which was dealt with by 

predecessors, but also content (layout and types of different objects on stage), 

which is why they introduced the term distribution gap. 

 

Kong et al. (2020) built Synthinel-1, a synthset designed to segment buildings in 

aerial images. They used 9 different architectural styles to achieve domain 

randomization, thus solving the problem observed in the work of Dosovitskiy et 

al. (2017). A new problem they faced is the size of the required virtual world in 

each frame because 10-20 km2 of urban environment densely populated with 3D 

objects already sets significant memory requirements that the use of levels of 

detail (LODs), criticized in (Fonder and Droogenbroeck 2019), cannot solve. 
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3 Analysis 

The largest number of synthsets (20% in the analyzed works) was created in the 

domain of autonomous driving and it should be borne in mind that a significant 

part of the methods and techniques of their generation is optimized for this 

application. 

 

3.1 The general process of synthsets generation 

 

From the analyzed papers, the general process of synthsets generation, presented 

in Fig. 2, can be extracted. 

  

 

 

Fig. 2 The general process of synthsets generation in the analyzed papers (N=165) 

 

The general process consists of 17 individual processes where 16 (1 - 2 and 

further 4 - 17) make a linear sequence. The exception is the process under number 

3 (integrations), which represents an alternative way of using the synthesised data 
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by integrating generation methods with one of the machine learning platforms. As 

such, it is not the subject of interest of this article. 

 

The numbering used to denote individual processes derives from the 

systematisation of the synthset generation process, built during this research, 

according to the chronological first appearance of a particular item in the papers 

covered in Section 2 and the order (1 to 17) in which individual items participate 

in the process of generating a synthset. Numbering is used hereinafter in the text, 

within parentheses, to reference systematisation hierarchy items. 

 

3.2 Individual processes 

 

If a reference dataset is available during the construction of the synthset, its 

optional analysis (1) makes it possible to perform algorithmic estimation of the 

shading (12) parameters (Rozantsev et al. 2015) and determine the distribution of 

features that is desirable to achieve with the synthset (Veeravasarapu et al. 2015). 

 

The first mandatory process is the selection of the synthset generation method (2). 

In the analyzed works, 9 different methods (2.1 - 2.9) were identified, shown in 

Fig. 3. 
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Fig. 3 Synthset generation methods and their mutual influence (best viewed in 

digital format) 

 

Some methods are optionally contained in more complex methods, which is 

indicated by a dashed line in Fig. 3. Game engine method (2.5) allows direct 

integration with machine learning platforms (3), and the highlighted methods (2.3, 

2.5 and 2.8) are shown in detail on Fig. 4 - The "2D" and "3D" labels refer to the 

type of scene (2D or 3D) that is created. 

 

In the programming method (2.1) (Desurmont et al. 2006) the synthset is created 

algorithmically, by direct programming of the output. The method of using the 

generator (2.2) (Hamarneh 1999) relies on an existing generator that can be pre-

programmed or built using a tool for digital content creation, or a physics or game 

engine. The generator allows the user to change the synthesis parameters, and the 

output does not necessarily generate in real-time. The composing method (2.3) (Su 

et al. 2015) treats the scene as a set of 2D layers laid on top of each other using a 

minimum of 2 layers (one each for the image's background and foreground). The 

possibility of using the commercial computer game method (2.4) (Taylor et al. 

2007) depends on the license which regulates whether the game may be used to 

generate a synthset. If it can, the biggest problem is the way to access the content 

within the game, possibly adapt it to own needs and output it in the appropriate 

form (final image with the corresponding annotation). The technical basis of every 

computer game is the game engine (2.5) (Rivera-Rubio et al. 2015), which is, 

when used as a production tool, also a distinct method that can produce a synthset 

without first making a game. An integral part of most game engines is the physics 

engine (2.6) (McCormac et al. 2017), which can also exist as separate software, 

specializing in a particular physics simulation type. Physics engine can directly 

produce a synthset, making its application a distinct method. The method of using 

the simulator (2.7) (Koenig and Howard 2004) relies on the programming of the 

respective or the use of a game engine or a modified commercial computer game 

to conduct a specific simulation. Unlike generators, simulators most often 

generate output in real-time. The digital content creation method (2.8) (Kaneva et 

al. 2011) relies on tools that often contain a physics engine and enable automation 

by programming. Chronologically, the latest method is generative adversarial 
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training (2.9) (Veeravasarapu et al. 2017) which uses neural networks (GANs) 

during the synthset generation process but is limited by the inability to create 

appropriate annotations automatically and is more suitable for use as an auxiliary 

tool for domain adaptation (17.4). 

 

Processes 4 - 17, their branching and convergence of individual items can be 

observed in Fig. 4. 

 

In the case of creating 2D scenes (8.1), the most common sources of 2D objects 

intended for blending (7.1.1) (Su et al. 2015) are previously rendered images 

(4.1.1) (Mayer et al. 2016), which may contain masks for automatic extraction of 

the object of interest, and photographs (4.1.2) (Georgakis et al. 2017), which 

require manual extraction. When it comes to 3D scenes (8.2) 3D objects can be 

found on the Internet (4.2.1) (Wu et al. 2014), procedurally (4.2.2) (Hamarneh 

1999) or manually (4.2.3) (Peris et al. 2012) generated, built by converting OSM 

maps (4.2.4) (Tian et al. 2018) to 3D geometry, generated as L-System (4.2.5) 

(Ubbens et al. 2018) or using photogrammetry (4.2.7) (Jung 2019) and used as a 

point cloud, obtained by LiDAR (4.2.6) (Li et al. 2019), which can also be 

converted to 3D geometry. 

 

3D objects are often pre-processed when introduced to the 3D scene. Their 

modification can be parametric (5.1.1) (Queiroz et al. 2010), manual (5.1.2), and 

reduced to retopologizing (5.1.3) or scaling on different axes (5.1.4) (Carlucci et 

al. 2017). If the 3D objects are obtained with LiDAR, it is possible to pre-process 

the entire LiDAR scenes (5.1.5) (Li et al. 2019). 

 

While typical elements (6) of a 2D scene are 2D objects (6.1) and a background 

(6.5) (Pishchulin et al. 2011), a background (as a 2D object) can also be part of a 

3D scene, with 3D objects (6.2), lights (6.3) (Pomerleau 1989) and at least one 

camera (6.4) (Desurmont et al. 2006). 

 

The 3D scene can be generated manually (7.2.1) (Mayer et al. 2018), procedurally 

(7.2.2) (Johnson et al. 2017), by physics simulation (7.2.3) (McCormac et al. 
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2017), generative adversarial training (7.2.4) (Veeravasarapu et al. 2017) and 

using augmented reality (7.2.5) (Sharma et al. 2018). 

 

Although it is technically possible to perform simulation (9) and animation (10) 

on 2D scenes, they are performed exclusively on 3D scenes to generate synthsets. 

Physics (9.1) (Lin et al. 2016), atmospheric conditions (9.2) (Vacavant et al. 

2013), crowds (9.3) (Courty et al. 2014), seasonal changes (9.4) (Ros et al. 2016), 

perturbations (9.5) (Solovev et al. 2018) and object deformations (9.6) (Wang et 

al. 2019a) are simulated. The animation includes motion-capture (10.1) 

(Pishchulin et al. 2011), manual animation (10.2) (Grauman et al. 2003), (Ragheb 

et al. 2008), automatic transitions between animations (10.3) (Ragheb et al. 2008), 

predefined motion paths (10.4) (Henry et al. 2013), procedural animation (10.5) 

(Wood et al. 2016), and ragdoll animation (10.6) (De Souza et al. 2017). 

 

The first convergence of 2D and 3D pathways during synthset generation is 

present in the process of adding complications (11). Complications are most often 

introduced as some form of occlusion (11.1) and as missing frames (11.2) in video 

sequences (Hamarneh 1999). 

 

The rendering process (12) applies exclusively to 3D scenes. It defines the type of 

shading (12.1) (Tsirikoglou et al. 2017) and selects the renderer (12.2), the 

rendering hardware (12.3) (Papon and Schoeler 2015), the output settings (12.4) 

(Peris et al. 2012) and, limited by previous selections, the method of delivering 

the output to the learning model (12.5) (Mnih et al. 2013). 

 

The second convergence of 2D and 3D paths occurs in the post-processing 

process (13) when noise (13.1) (Pomerleau 1989) is added to the generated image; 

performs smoothing (13.2) (Barron et al. 1994); introduce image distortion (13.3) 

and, for video sequences, video ghosting (13.4) (Taylor et al. 2007); performs 

antialiasing (13.5) (Taylor et al. 2007); add fog (13.6) (Tarel et al. 2010), motion 

blur (13.7) and focus (13.8) (Butler et al. 2012), and sun glare (13.9) (Mayer et al. 

2016); performs game curve manipulation (13.10) (Mayer et al. 2016); add 

vignette (13.11) (Movshovitz-Attias et al. 2016), chromatic aberration (13.12) 

(Veeravasarapu et al. 2016), automatic exposure (13.13) (Wrenninge and Unger 
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2018) and ambient occlusion (13.14) (Chociej et al. 2019); and simulate codec 

errors (13.15) and lens contamination (13.16) (Temel et al. 2019). 

 

In the process of output (14), direct image output (14.1) (Pomerleau 1989) and 

automatic annotation (14.2) are created, which can be influenced by the result of 

each of the upcoming 3 processes (15 - 17). 

 

The image processing process (15) uses the methods of down-sampling (15.1) 

(Mnih et al. 2013), cropping (15.2) (Mnih et al. 2013), removing the background 

by segmentation before training (15.3) (Moiseev et al. 2013) and warping (15.4) 

(Zioulis et al. 2019). 

 

If the basic synthset needs to be expanded by augmentation (16) (Hamarneh 

1999), one of the following methods is used: occlusion (16.1), cropping (16.2), 

changing the contrast of the depth map (16.3), changing the brightness of the 

depth map (16.4), replacing the white background colour in the depth map with a 

random colour away from the centre of mass of the object (16.5), shearing (16.6), 

2D rotation (16.7), 3D rotation (16.8), truncation (16.9), distractor objects (16.10), 

brightness change (16.11), contrast change (16.12), mirroring (16.13), 

homography (16.14), sharpening (16.15), embossing (16.16) and colour channel 

inversion (16.17). 

 

If the adaptation of the domain (17) will not be carried out by mixing the synthset 

with the real dataset, it can be done as part of the synthset generation process, 

using a framework (17.1) (Vazquez et al. 2014), transfer learning (17.2) (Papon 

and Schoeler 2015), style transfer (17.3) (Atapour-Abarghouei and Breckon 2018) 

and adversarial training (17.4) (Atapour-Abarghouei and Breckon 2018). 

 

The course of these processes (for composing, game engine and digital content 

creation methods) is shown in Fig. 4. 
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Fig 4. Synthset generation process for composing, game engine and digital 

content creation methods (best viewed in digital format) 
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3.3 Representation of generation methods in computer vision 

tasks and domains 

 

The analyzed works include 85 produced synthsets, 12 simulators and 6 

generators, all publicly available and named. 

 

Observing the representation of generation methods in individual computer vision 

tasks and domains (Table 1), we can conclude that the most frequently used 

method is digital content creation (30.1%). It is the favoured method in the optical 

flow and scene reconstruction tasks, where it is also the only method used. This 

method's popularity can be explained by the flexibility that digital content creation 

tools provide in scene generation, unencumbered by the real-time performance 

imperative inherent in the game engine method. Also, this method enables the 

achievement of the highest degree of photorealism. 

 

The second method in terms of frequency of use is the game engine (19.4%). In 

addition to the commercial computer game method, the game engine method is 

also one of the preferred methods in autonomous driving, and it is the pose 

estimation's preferred method. Its key advantage, welcome in both fields, is the 

possibility of real-time performance, but at the expense of photorealism. The 

method of using the simulator (15.5%) is preferred in robot navigation, as well as 

in autonomous flying, where it benefits from physics simulation. 

 

The low representation (1.18%) of composing method, physics engine method and 

a combination of digital content creation, game engine and simulator methods can 

be explained by the exclusive application of the composing method for the optical 

flow task, incorporating a physics engine into the game engine and, in the case of 

using a combination of methods, by preferring simpler synthset production 

processes by most authors. In optical flow, the use of the digital content creation 

method prevailed over time. 

 

The column named "not specified" refers to 9.7% of papers in which the authors 

did not specify the method of generating their own synthsets. 
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Table 1 Representation of generation methods in individual computer vision tasks 

and domains 
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action recognition       1 2   3 

autonomous driving 1   6 6  4 3 1 2 23 

autonomous flying     1  3   1 5 

gaze estimation     1      1 

image features evaluation        2   2 

light fields analysis        1   1 

object classification     1   2  1 4 

object detection 1 1   1  1 3   7 

object reconstruction 1       1   2 

object tracking 1    1      2 

optical flow   1     4  1 6 

pose estimation 1    4   3  2 10 

robot navigation 1    2  6   1 10 

scene reconstruction        4   4 

scene understanding 1 1    1  1  1 5 

segmentation 2 2      2   6 

stereo disparity  1   2   1   4 

surveillance  1  2 1  1 2   7 

texture generation          1 1 

∑ 9 6 1 8 20 1 16 31 1 10 103 
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4 Conclusion 

 

Over the past three decades, synthsets have become the solution to many 

problems related to preparing a large amount of quality data for deep learning. 

With a potentially unlimited amount of data generated quickly and economically, 

they are characterized by the possibility of automated annotation. The automated 

annotation also eliminates the potential human error inherent in manual 

annotation, which can jeopardize the learning process. 

 

In this article, the past and current synthset generation practices are examined, the 

synthset generation process is systematized, and 9 different synthset generation 

methods are identified. 

 

Of the 9 identified generation methods, 3 compete for building optimal synthsets 

to represent dynamic environments (such as traffic, crowds and sports): digital 

content creation, game engine and composing. While the selection of the first two 

methods follows the previously established trend of representation of generation 

methods in existing synthsets and meets the requirements of photorealism (Zhang 

et al. 2017), composing is chosen as the third option because it can be realized in 

parallel with one of the previous two methods, using the resources created in the 

process. 

 

It is not recommended to use programming as a generation method, but only for 

the automation of individual processes within the selected methods. The same is 

true for the method of using a generator that is not optimal to build from scratch, 

given that the infrastructure required for generation is already developed within 

various tools for creating digital content and game engines. The use of 

commercial computer games is not a desirable option because we encounter 

known technical (Müller et al. 2018) and legal (Shafaei et al. 2016) problems. The 

method of using a standalone physics engine is excluded because physics 

simulation is not necessary (which also excludes the method of using a simulator), 

and if we want to use it, the physics engine is available within the digital content 

creation tools and game engines. We currently suggest avoiding the method of 
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generative adversarial training due to its complexity and problematic annotations 

(Tian et al. 2018). 

 

The main advantage of using the digital content creation method, in addition to 

achieving photorealism, is the unlimited ability to manage all aspects of the 3D 

scene, which is a prerequisite for effective domain randomization (Tobin et al. 

2017). The generative character of the digital content creation tools enables the 

procedural generation of a unique scene for each synthesized frame (Tsirikoglou 

et al. 2017), but also of each individual element of the scene, including geometry, 

which, for technical reasons, can hardly be achieved using only the game engines. 

Additional advantages of this method are the ability to distribute rendering to 

multiple computers and render arbitrary frames nonlinearly. However, in the case 

of limited rendering resources, at the expense of maximum photorealism, it is 

possible to apply a compromise and make appropriate adjustments to the 

geometry and other elements of the scene for application within the game engine 

and thus realize real-time rendering, with sufficient photorealism. 

 

The composing method depends on the availability of elements for the 

construction of the foreground and background. Foreground elements can be 

generated automatically during the use of the digital content creation method 

and/or the use of the game engine, and background elements can be created by 

photographing (Zimmermann and Brox 2017) during the creation of a reference 

(real) dataset. 

 

There is no previous comparison of efficiency for the selected primary generation 

methods. Thus, for future work, to determine which method and by what criteria 

is the best in practice, we recommend building and evaluating two primary or all 

three proposed synthsets in parallel, using the procedural generation of not only 

individual scenes but all elements of the scene. 
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