Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1257069

Review and analysis of synthetic dataset generation methods and techniques for application in computer vision


Paulin, Goran; Ivasic‐Kos, Marina
Review and analysis of synthetic dataset generation methods and techniques for application in computer vision // Artificial intelligence review, 2023 (2023), s10462-022-10358-3, 45 doi:10.1007/s10462-022-10358-3 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1257069 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Review and analysis of synthetic dataset generation methods and techniques for application in computer vision

Autori
Paulin, Goran ; Ivasic‐Kos, Marina

Izvornik
Artificial intelligence review (0269-2821) 2023 (2023); S10462-022-10358-3, 45

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Computer vision ; Synthetic dataset ; Synthset ; Generation methods

Sažetak
Synthetic datasets, for which we propose the term synthsets, are not a novelty but have become a necessity. Although they have been used in computer vision since 1989, helping to solve the problem of collecting a sufficient amount of annotated data for supervised machine learning, intensive development of methods and techniques for their generation belongs to the last decade. Nowadays, the question shifts from whether you should use synthetic datasets to how you should optimally create them. Motivated by the idea of discovering best practices for building synthetic datasets to represent dynamic environments (such as traffic, crowds, and sports), this study provides an overview of existing synthsets in the computer vision domain. We have analyzed the methods and techniques of synthetic datasets generation: from the first low-res generators to the latest generative adversarial training methods, and from the simple techniques for improving realism by adding global noise to those meant for solving domain and distribution gaps. The analysis extracts nine unique but potentially intertwined methods and reveals the synthsets generation diagram, consisting of 17 individual processes that synthset creators should follow and choose from, depending on the specific requirements of their task.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-drustv-18-222 - Automatsko raspoznavanje sportskih tehnika kod mladih sportaša i rekreativaca u svrhu usvajanja motoričkih vještina i usavršavanje stila (Ivašić Kos, Marina, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)

Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka

Profili:

Avatar Url Marina Ivašić Kos (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi doi.org

Citiraj ovu publikaciju:

Paulin, Goran; Ivasic‐Kos, Marina
Review and analysis of synthetic dataset generation methods and techniques for application in computer vision // Artificial intelligence review, 2023 (2023), s10462-022-10358-3, 45 doi:10.1007/s10462-022-10358-3 (međunarodna recenzija, članak, znanstveni)
Paulin, G. & Ivasic‐Kos, M. (2023) Review and analysis of synthetic dataset generation methods and techniques for application in computer vision. Artificial intelligence review, 2023, s10462-022-10358-3, 45 doi:10.1007/s10462-022-10358-3.
@article{article, author = {Paulin, Goran and Ivasic‐Kos, Marina}, year = {2023}, pages = {45}, DOI = {10.1007/s10462-022-10358-3}, chapter = {s10462-022-10358-3}, keywords = {Computer vision, Synthetic dataset, Synthset, Generation methods}, journal = {Artificial intelligence review}, doi = {10.1007/s10462-022-10358-3}, volume = {2023}, issn = {0269-2821}, title = {Review and analysis of synthetic dataset generation methods and techniques for application in computer vision}, keyword = {Computer vision, Synthetic dataset, Synthset, Generation methods}, chapternumber = {s10462-022-10358-3} }
@article{article, author = {Paulin, Goran and Ivasic‐Kos, Marina}, year = {2023}, pages = {45}, DOI = {10.1007/s10462-022-10358-3}, chapter = {s10462-022-10358-3}, keywords = {Computer vision, Synthetic dataset, Synthset, Generation methods}, journal = {Artificial intelligence review}, doi = {10.1007/s10462-022-10358-3}, volume = {2023}, issn = {0269-2821}, title = {Review and analysis of synthetic dataset generation methods and techniques for application in computer vision}, keyword = {Computer vision, Synthetic dataset, Synthset, Generation methods}, chapternumber = {s10462-022-10358-3} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font