Pregled bibliografske jedinice broj: 1257069
Review and analysis of synthetic dataset generation methods and techniques for application in computer vision
Review and analysis of synthetic dataset generation methods and techniques for application in computer vision // Artificial intelligence review, 2023 (2023), s10462-022-10358-3, 45 doi:10.1007/s10462-022-10358-3 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1257069 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Review and analysis of synthetic dataset generation methods and
techniques for application in computer vision
Autori
Paulin, Goran ; Ivasic‐Kos, Marina
Izvornik
Artificial intelligence review (0269-2821) 2023
(2023);
S10462-022-10358-3, 45
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Computer vision ; Synthetic dataset ; Synthset ; Generation methods
Sažetak
Synthetic datasets, for which we propose the term synthsets, are not a novelty but have become a necessity. Although they have been used in computer vision since 1989, helping to solve the problem of collecting a sufficient amount of annotated data for supervised machine learning, intensive development of methods and techniques for their generation belongs to the last decade. Nowadays, the question shifts from whether you should use synthetic datasets to how you should optimally create them. Motivated by the idea of discovering best practices for building synthetic datasets to represent dynamic environments (such as traffic, crowds, and sports), this study provides an overview of existing synthsets in the computer vision domain. We have analyzed the methods and techniques of synthetic datasets generation: from the first low-res generators to the latest generative adversarial training methods, and from the simple techniques for improving realism by adding global noise to those meant for solving domain and distribution gaps. The analysis extracts nine unique but potentially intertwined methods and reveals the synthsets generation diagram, consisting of 17 individual processes that synthset creators should follow and choose from, depending on the specific requirements of their task.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-drustv-18-222 - Automatsko raspoznavanje sportskih tehnika kod mladih sportaša i rekreativaca u svrhu usvajanja motoričkih vještina i usavršavanje stila (Ivašić Kos, Marina, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Profili:
Marina Ivašić Kos (autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus