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Abstract: Improving machining performance and meeting the requirements of sustainable production
at the same time represents a major challenge for the metalworking industry and scientific community.
One approach to satisfying the above challenge is to apply different types of cutting fluids or to
optimise their usage during the machining process. The fact that cutting fluids are well known as
significant environmental pollutants in the metalworking industry has encouraged researchers to
discover new environmentally friendly ways of cooling and lubricating in the machining process.
Therefore, the main goal is to investigate the influence of different machining conditions on the
efficiency of hard machining and find a sustainable solution towards smart manufacturing. In the
experimental part of the work, the influence of various machining parameters and conditions on
the efficiency of the process was investigated and measured through the surface roughness, tool
wear and cutting force components. Statistical data processing was carried out, and predictive
mathematical models were developed. An important achievement is the knowledge of the efficiency
of compressed cold air cooling for hard milling with the resulting lowest average flank wear of
0.05 mm, average surface roughness of 0.28 µm, which corresponds to grinding procedure roughness
classes of N4 and N5, and average tool durability increase of 26% compared to dry cutting and
conventional use of cutting fluids. Becoming a smart machining system was assured via technological
improvement achieved through the reliable prediction of tool wear obtained by radial basis neural
networks modelling, with a relative prediction error of 3.97%.

Keywords: hard milling; sustainability; smart manufacturing; vortex tube; compressed cold air-cooling;
radial basis neural networks

1. Introduction

Manufacturing is one of the essential human activities, and it has been and shall
remain the foundation of a very strong economy. There is no other sector that could
replace manufacturing within that role. Without a strong manufacturing base, other sectors
such as the service and financial sectors could collapse [1]. As an engine of growth, the
manufacturing sector has vastly expanded economic development [2]. Productivity growth
of the manufacturing sector is positively related to the growth of the manufacturing sector’s
output with increases in the returns in terms of lower average costs and positive effects
on capital accumulation and technical progress as drivers of this mechanism [3]. Within
the manufacturing sector, the metalworking industry has been one of the most rapidly
developing and growing industries in recent years. The vast majority of metal parts that are
used as a component of different products were shaped using some of the material removal
processes. Conventional machining processes are the most frequently applied material
removal processes of metals and are one of the most important manufacturing processes.
The Industrial Revolution and the growth of manufacturing-based economies of the world
can be traced largely to the development of various machining operations [4]. Considering
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different types of manufacturing such as one-off and batch production, machining processes
cannot be replaced with any other type of process, and as such, in many cases, it represents
the only technologically feasible and economically profitable method of production. When
planning the machining process and choosing values of the input parameters (cutting
parameters), the decision closely depends on geometric dimensioning and tolerancing,
together with machined surface quality. High-performance cutting parameters assure
higher productivity; however, they can result in surface quality deterioration and excessive
tool wear [5]. Consequently, cutting fluids (CFs) were introduced into the manufacturing
industry to reduce the temperature within the cutting zone and minimise the friction wear
between the workpiece and the tool, and all through their cooling and lubrication effect.
The global CF demand was expected to reach 2.2 million tonnes in 2022, with Asia as the
largest consumer [6]. For instance, producers within the European Union are consuming
approximately 320,000 tonnes of CFs yearly in various machining processes [7]. Using CFs
increases productivity, improves the surface, reduces the costs of further processing and,
consequently, increases total profits. However, modern life requires the introduction of
new parameters in the equation of pursued success, such as sustainability with its three
main pillars, namely, environmental and social acceptability and better economic feasibility.
Recent demands resulting from these three dimensions together with CFs’ functional
aspects should be the drivers for the future development of any new types of CFs or new
types of application techniques (Figure 1).
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Figure 1. Sustainability aspects using cutting fluids within the machining process with clear examples
of some serious drawbacks of CF usage.

Approximately 85% of the cutting fluids used around the world are mineral-oil-based
CFs, having the highest demand among other types [8]. In 2011, 1.76 billion litres of
mineral oil base fluids were used worldwide to produce cutting fluids [9]. Mineral-oil-
based CFs consist of different toxic components that are hazardous in storage and disposal
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and as such presents a significant threat both to environmental pollution and human
health. By observing the loss of cutting fluids such as evaporating, uncontrolled leakage,
residuals on the workpiece, cutting tool or shavings, it can be concluded that almost 30%
of the annual quantity of cutting fluid is lost in the manufacturing system by means of
the abovementioned processes [10]. The disposal of used cutting fluids poses numerous
environmental questions, particularly when it is known that they represent one of the most
complex types of waste [11]. The National Institute for Occupational Safety and Health
(NIOSH) estimates that at the state level, 1.2 million workers are exposed to the adverse
effects of cutting fluids annually [12]. NIOSH adopted a document on the criteria for a
recommended standard in relation to working conditions in the machining industry. The
same document underlines the negative influence of cutting fluids due to the effect of the
formation of oil mist. Among the most frequent diseases are different skin diseases and
cancerous and noncancerous tumours of the respiratory system [13,14]. Other hazards such
as the effect of oil vapours, bacterial effects, genotoxic effects, the generation of cancerogenic
substances and the presence of heavy metals in additives are constant subjects of discussion
with numerous possible short- and long-term consequences for humans [15,16]. Another
disadvantage of using of CFs is their cost. When machining medium-hard materials, the
cost of cutting fluid usage can reach up to 17% of the total machining costs [17], while the
same cost when dealing with difficult-to-cut materials ranges between 20% and 30% of the
total machining costs [18].

Many recent researchers have shown the tendency, but also the possibilities, of switch-
ing to dry machining, in which case the sociological and environmental conditions of
sustainability would be automatically met [19–21]. The advantages of dry machining are
multiple, and many authors point out the following: The non-existence of any harmful
effect on humans and the environment, the reduction of variable machining costs due to the
non-usage of cutting fluids, easier recycling of a chip with no residuals of CFs on it, reduced
cleaning after machining of the workpiece and, in some cases, the possibility of applications
of high-speed machining resulting in a reduction of cutting forces and consequently longer
tool life [22–24]. However, the question of fulfilling the economic condition of sustainability
of dry machining still remains open, and further answers are expected from scientists in
the field of production engineering.

Following Figure 1, meeting all sustainability demands at the same time in order
to develop better/smarter solutions represents a huge challenge. During the last two
decades, many attempts to achieve sustainability in machining were successful and led
to the development of alternative types of cooling and lubrication in machining. Among
the most frequently used alternative techniques, one must single out techniques such as
minimum quantity lubrication (MQL), Micro-jet MQL, cryogenic cooling (CC), compressed
cold air cooling (CCAC) and vegetable-based cutting nanofluids.

MQL, also known as near-dry machining, is a lubrication method where very small
quantities of lubricant are applied to the machining zone [23]. A low tribological-interface
temperature is provided by the tribological film formed by homogenous mists in MQL-
based fluids [19]. In relation to dry machining, the MQL technique provides the possibility
of machining materials that necessarily require lubrication while at the same time decreas-
ing the machining process’ environmental contamination, health risks and high energy
consumption [24]. MQL greatly minimises the utilisation of cutting fluid and, hence, signif-
icantly minimises the lubrication cost when compared to conventional methods such as
flooding [25]. Researchers indicate certain deficiencies of the MQL technique such as the
high investment cost, MQL system maintenance costs, lack of function of chip removal, low
amount of lubricant reaching the cutting zone and mist filtering and disposal problems [25].
Some of the drawbacks, such as difficulties with the lubricant reaching the cutting zone,
have been overcome by using new application techniques such as Micro-jet MQL [19]. The
advantage of the Micro-jet MQL system is that, due to the high pressure through the small
nozzle diameter, the lubricant can successfully reach the cutting zone and fulfil its function.
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Despite the advantages and shortcomings of this technique, before making a decision on
its implementation, it is necessary to perform a cost–benefit analysis.

Cryogenic processes present another cooling-based sustainable type of machining,
mostly using liquid nitrogen at temperatures of up to −196 ◦C [16]. Going back to its
beginning in the 1900s, cryogenic machining first used carbon dioxide, and, later on,
even liquid helium was introduced as a coolant. When a cryogenic coolant is used in the
machining process, the evaporation of liquid nitrogen does not represent any hazard to
the environment or workers’ health. The same does not apply to carbon dioxide, which
pollutes the atmosphere. However, extremely low temperatures of cryogenic fluids pose
an injury hazard due to contact with cryogenic fluids when maintaining the system itself
or during manual adjustment of the above-mentioned technique to a particular tool, the
geometry of the workpiece or type of machining [26]. Cryogenic cooling was proven
to be successful when machining difficult-to-cut materials such as titanium-based alloys
and nickel-chromium-based alloys [27,28]. In order to ensure the correct conditions for
high-performance machining for the prolonging of tool life, it is necessary to spray large
quantities of cryogenic fluids during machining in an efficient way. The abundant use of
cryogenic fluids and the cost of investment for the system for the supply and spraying
of fluids in the cutting area eventually increases the total machining costs of the process
and introduces the need to conduct research on the economical sustainability of cryogenic
processes [29].

CCAC air is a relatively new machining cooling technique. In initial research, only
room-temperature compressed air was used, which, in relation to certain functions of the
conventional usage of CFs, proved inferior. Experimental research conducted in recent
years classified cooling using compressed cold air as an extremely efficient alternative
cooling technique. Evaporation of a medium such as air in the atmosphere without the
possibility of contamination, the extension of the tool’s life, the lack of chips from residual
oil and the non-existence of harmful impacts on human health when exposed to these agents
are just some of the positive characteristics of this cooling technique [30]. Cooling using
compressed cold air during machining can be performed by using specifically designed
systems for the supply and distribution of cold air. Such systems need higher economical
investment and additional sources of electrical energy for the power supply [31]. Simpler
and cheaper variants can be achieved using a vortex tube, for which a power source is not
necessary, but rather only a supply of a certain quantity of pressurised air (Figure 2).
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The CCAC system was used when performing these experiments, of which the results
are presented in this paper, using a mechanical device called a vortex tube, also known
as the Ranque–Hilsch vortex tube. The compressed air tangentially enters a cylindrical
chamber with a turbulent air flow in a screw-like motion that splits within the vortex
chamber into two lower-pressure streams. The inner cold-air stream escapes the tube
through the centre orifice, while the outer hot-air stream is at the bottom of the tube near
the control valve [16]. Consequently, CCAC using a vortex tube represents an economically,
socially, and environmentally acceptable alternative cooling technique in machining [32].

The availability of mineral-oil-based fluids is limited and has been decreasing as the
years have passed, which triggered the idea of introducing more sustainable cutting fluids
in the manufacturing industry [33]. A solution was found in the use of vegetable-based CFs,
which are extracted from renewable sources, making them unlimited and sustainable [34].
Vegetable oils generally have several advantages over mineral-oil-based ones, such as
reducing the health risks to operators by being less toxic, decreasing mist production
leaving cleaner and healthier work environments, high-viscosity indices, higher lubricities,
low evaporative losses and good metal adherence [17,35,36]. Unfortunately, these fluids
also have some drawbacks, such as low thermal stability, low corrosion protection and
poor oxidative stability [37]. The result of efforts attempting to overcome these mentioned
limitations was the development of a new generation of vegetable-based CFs, known as
nanofluids [38]. Nanofluids gain their advantage from nanoparticles that are added to the
fluid base, which improves the thermal limitation of vegetable-oil-based CFs and ensures
superior heat transfer capabilities [39]. The cost is one of the main drawbacks of nanofluids,
but this can be compensated by choosing a different application method such as the MQL
technique [40].

After comprehensive research, with only the most significant research articles pre-
sented/cited on previous pages, a comparison matrix of alternative types of cooling and
lubrication techniques for machining processes was formulated and is presented in Table 1.
Considering the facts presented in Table 1, as a replacement for the conventional use of
CFs, an alternative type of cooling in the form of CCAC was chosen. The same cooling
technique will be applied in the hard-milling process. The results of the research should
provide detailed insight into the possibilities, advantages and possible disadvantages of
CCAC compared to dry machining and machining with the conventional use of CFs.

Table 1. Comparison matrix of alternative types of cooling/lubrication techniques for machining processes.

Alternative Type of Cooling Investment
Costs

Application
Cost

Maintenance
Need

Process
Efficiency

Sustainability Aspects Fulfillment

Economic Environmental Social

Micro-jet MQL H H H H M M M

Cryogenic cooling (CC) H H H H M M M

Compressed cold air cooling (CCAC) L L L M M H H

Vegetable based cutting nanofluids M L M M L H H

L—low, M—moderate, H—high.

The development and usage of alternative types of cooling accompanied by the de-
velopment of new materials, tools and coatings constitute one of the solutions to aid the
manufacturing process in becoming sustainable. However, to fully achieve the sustain-
ability goals in industrial manufacturing, it is also crucial to become “Smart”, i.e., to use
technologies emphasised by the new industrial platforms Industry 4.0 [41] and Industry
5.0 [42]. The relationship between Sustainable and Smart manufacturing, sustainability
goals and new technologies is presented in Figure 3.
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The next important aspect is to define Smart manufacturing. According to Gartner
Consulting, Smart manufacturing is “the notion of orchestrating physical and digital
processes within factories and across other supply chain functions to optimize current
and future supply and demand requirements. This is accomplished by transforming and
improving ways in which people, process and technology operate to deliver the critical
information needed to impact decision quality, efficiency, cost and agility” [43]. In terms
of machining, smart means having a machining system able to collect machining outputs
(surface roughness, material removal rate, tool wear, etc.), analyse them in correlation
with cutting parameters (cutting speed, feed, depth of cut, etc.) and use multi-objective
optimisation techniques to optimise on-going or future machine process. In that way, the
information is collected and used to optimise the process in terms of quality, efficiency, cost
and agility, but also in alignment with ecological constraints and safety requirements [44].
It is interesting to note that Gartner Consulting mentions the quality, efficiency, cost and
agility of the process, but not the ecological and social aspects of the process. That kind
of vision is using new technologies to generate an economic leap, but it seems to be
forgetting the sustainability goals. A similar vision is described in Industry 4.0, therefore
the European Commission concluded “the Industry 4.0 paradigm, as currently conceived,
is not fit for purpose in a context of climate crisis and planetary emergency, nor does it
address deep social tensions” [42]. Furthermore, the European Commission concluded
that without a green and social industrial strategy, the EU will not succeed in its journey
toward a completely new economic paradigm within one generation, i.e., to become
climate-neutral by 2050. Therefore, the European Commission now pushes the Industry 5.0
paradigm as the European strategy for the following decades. Industry 5.0 has a mandatory
environmental dimension, leading to the transformation that excludes the use of fossil
fuels, promotes energy efficiency, relies on nature-based solutions, regenerates carbon sinks,
renews biodiversity, etc. The main differences between Industry 4.0 and Industry 5.0 are
presented in Table 2.
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Table 2. The main differences between Industry 4.0 and Industry 5.0 (adapted from [42]).

Dimension Industry 4.0 Industry 5.0

Technology

Centred around enhanced efficiency through digital
connectivity and artificial intelligence data

Emphasises the impact of alternative modes of
(technology) governance for sustainability and
resilience data

Technology centred around the emergence of
cyber-physical objectives

Empowers workers through the use of digital devices,
endorsing a human-centric approach to technology

Economy

Aligned with optimisation of business models within
existing capital market dynamics and economic models,
i.e., ultimately directed at minimisation of costs and
maximisation of profit for shareholders

Ensures a framework for an industry that combines
competitiveness and sustainability, allowing industry to
realize its potential as one of the pillars of transformation

Ecology

No focus on design and performance dimensions
essential for systemic transformation and decoupling of
resource and material use from negative environmental
and climate impact

Builds transition pathways towards environmentally
sustainable uses of technology

Society
No focus on design and performance dimensions
essential for systemic transformation and decoupling of
resource and material use from negative social impacts

Expands the remit of a corporation’s responsibility to
their whole value chains

Introduces indicators that show, for each industrial
ecosystem, the progress achieved on the path to
well-being, resilience and overall sustainability

From Table 2, it is obvious that economical and efficient cutting-fluid-based machining
perfectly fits with the aims of Industry 4.0, but it is not completely aligned with the aims of
Industry 5.0, which are built upon pillars of sustainability, resilience and human-centricity.
Therefore, this research aims to address the gap between Industry 4.0 and Industry 5.0 aims
in the context of machining. The concept of a Sustainable and Smart manufacturing process
will be demonstrated in a case of the hard milling process under compressed cold air-cooling
conditions. Nevertheless, the same concept can be applied to other machining technologies,
as well. The choice of hard milling for the purpose of assessing the sustainability of
the machining process under CCAC conditions is even more significant if we consider
that, for a long time, the common practice for processing hard materials was grinding.
It is very well known that the grinding process implies the use of large amounts of CFs,
which raises questions about the sustainability of the process itself. Aside from the many
benefits of hard machining compared to grinding, there are certain disadvantages such
as the phenomenon of the formation of a white layer on the machined surface that can
occur during hard machining. The white layer is very brittle and can lead to cracks in the
machined surfaces [45]. For that reason, surface integrity needs to be checked after the
machining process.

2. Materials and Methods

In order to investigate CCAC using a vortex tube and its efficiency in the hard milling
process as a sustainable solution towards smart manufacturing compared to dry machining
(DM) and machining with conventional use of cutting fluids (CFs), experiments were
carried out using the equipment and technology presented in Figure 4. All the cutting
tool specifications can be found by following the manufacturer code given in Figure 4.
The cutting fluid used was a water-miscible extreme-pressure (EP) coolant applied in the
cutting zone using 4 nozzles. Cooling with cold compressed air is achieved by using a
cold-air gun in which the use of vortex tube technology and filtered compressed air produce
sub-freezing air with a temperature of −20.4 ◦C.

By using a dual-nozzle system, as shown in Figure 5, we ensured that the cold air
stream was evenly distributed on both the rake and flank face of the cutting tool.
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surfaces.

The chemical composition and mechanical properties of the workpiece material are
given in Table 3. To obtain the conditions of hard milling, all the specimens needed to
undergo heat treatment in order to achieve a hardness value over 45 HRC. Heat treatment
was performed in a laboratory under controlled conditions. Following heat treatment, tests
on every specimen showed the achievement of constant hardness with a value of 47 HRC,
classifying hardened steel 42CrMo4 as part of the group of difficult-to-cut materials.

Table 3. The chemical composition and mechanical properties of workpiece (steel 42CrMo4).

Chemical Composition

C Si Mn P S Cr Ni Mo Cu

0.430 0.278 0.77 0.018 0.028 1.09 0.08 0.185 0.08

Mechanical properties

Yield strength [MPa] Tensile strength [MPa] Elongation [%] Notch impact energy [J] Hardness [HRC]

1128 1223 14.4 42 35

The conventional cutting fluid used was a water-miscible EP coolant based on amine
and boron acid. The technical data are presented in Table 4. The recommended mixing ratio
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for machining cast iron and high-tensile steel is 5%. In the present study, a 7% concentration
was used.

Table 4. Technical data for cutting fluid Rhenus TU30 T.

Concentrate Emulsion

viscosity 20 ◦C
(mm2/s)

Content of
mineral oil %

pH-value
5%

corrosion protection
(DIN 51360-2)

approx. 160 approx. 18 9.4 4% (grade 0)

Figure 6 shows the measuring equipment for surface roughness, flank wear and
cutting force components used in the present work.
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For surface roughness measurements, a common unit of measurement, namely, the
“average roughness” (Ra), was used. Before the measurement, the settings of the roughness-
measuring device were selected to a cut length and sampling length of 0.8 mm and
5.6 mm, respectively, and the device was calibrated. The result of the surface rough-
ness measurement is the mean value of five consecutive measurements at different specific
positions on the machined surface. Measurements of the flank wear (VB) were performed
according to the guidelines of the international standard ISO 8688-1. On all three inserts,
prior to being separated from the tool holder, the length VB within the major flank face zone
was measured (Zone B, Figure 7) and the average flank wear value was used. The cutting
force components Fx, Fy and Fz represent the sum of orthogonal projections of tangential,
radial and axial forces acting on the inserts during milling. For the purposes of statistical
analysis, the mean value of the maximum cutting force on all three inserts was taken. The
Kistler 9257A dynamometer, together with the Kistler 5007A multi-channel amplifier, was
used for the measurement of the cutting forces. The operating temperature range for the
dynamometer was 0–70 ◦C (normal working conditions; an air temperature of 15–25 ◦C,
a humidity of 30–60%). Dynamometer typical repeatability within 0.1% of the full-scale
output (range of measurement signal of a sensor) and dynamometer error of less than 3%
were assumed [46,47]. Different but constant cutting parameters during each experiment
should enable the avoidance of temperature changes during machining and an error signal.

The controllable parameters were the cutting speed vc, feed per tooth ft, radial depth
of cut ae and cutting time t, i.e., insert’s engagement time and cutting, as shown in Figure 7.
The axial depth of cut ap was kept constant at 5 mm. The cutting parameters and their
permissible ranges corresponding to the operational limits recommended by the toolmaker
together with the machine tool capabilities are given in Table 5. Each experiment was
performed with non-test inserts and the down-milling method was adopted.
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Table 5. Input variables with permissible ranges for hard milling experiments.

Cutting Speed
vc [m/Min]

Feed per Tooth
ft [mm/Tooth]

Radial Depth of Cut
ae [mm]

Machining Time
t [Min]

Machining Conditions
Mc

70–120 0.02–0.05 1–2 10–22
Dry Machining (DM)

Conventional cutting fluid (CFs)
Compressed cold air cooling (CCAC)

Detailed parameter analysis of particular machining procedures and cutting condi-
tions was carried out. Aiming to obtain a mathematical model that predicts machining
outputs based on input parameters, two approaches were used in this research. The first
was a statistical model based on the design of the experiment (DOE), analysis of variance
(ANOVA) and regression analysis (RA). The second approach was based on algorithmic
modelling using the artificial neural network (ANN). The advantage of the ANN is the
capability of mapping very complex and nonlinear systems, and the hard milling process
researched in this study clearly represents that kind of system. The factorial design of ex-
periments was used to carry out the experiments. Since the milling process is characterized
by many different factors with direct or indirect effects on the course and results of an
experiment, it is important to manage experiments with the statistical multifactor method.
In this research, the design of experiments was based on the rotatable central composite
design (RCCD). The RCCD of experiments is commonly used in experimental research for
modelling and the adaptive control of multifactor processes because of its possibility to be
optimized [48].

The RCCD models the response using the empirical second-order polynomial:

y = b0 +
k

∑
i=0

bi · Xi +
k

∑
1≤i<j

bij · Xi · Xj +
k

∑
i=1

bii · X2
i (1)

where:

- b0, bi, bij, and bii represent regression coefficients.
- Xi, and Xj represent coded values of input parameters.
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The required number of experimental points for RCCD is determined using the fol-
lowing expression:

N = 2k + 2k + n0 = nk + nα + n0 (2)

where:

- k is the number of parameters.
- n0 is the repeated design number on the average level.
- nα is the design number on the central axes.

The experimental design matrix was obtained from four input variables varied at three
levels, representing a design of 30 experiments. The coded values of the input parameters
together with the physical values of the parameters make up the matrix of the experimental
plan. The order of execution of the experimental plan, obtained using the Design Expert
8.0.10 program, was generated in random order.

The artificial neural network (ANN) represents a non-linear mapping system that
consists of processors (neurons) with weighted interconnections. The ANN builds a knowl-
edge base using a significant amount of data for learning while establishing the analytical
model in order to predict, decide and/or diagnose. Fitting neural network parameters is
the learning task that allows the mapping of a given input to known output values. After
the learning has finished, the computation of responses of the neural network involves the
computation of values of the approximated hyper-plane for a given input vector.

Approximation theory is employed with problem approximation or interpolation of
the continuity of multi-variable function f (x) by means of the approximate function F(w,x)
with an exactly determined number of the parameter w, where x and w are the real vectors:

x = [x1, x2 . . . xn]
T (3)

w = [w1, w2 . . . wn]
T (4)

To enable the approximation of continual nonlinear multi-variable functions, it is
necessary to solve two main issues:

1. The proper selection of the approximate function F(w,x) that can efficiently approxi-
mate the given continuity of the multivariable function f (x), i.e., the problem representation.

2. Defining an algorithm for computation of the optimal parameter w, according to
the optimal criteria given in advance. Interpolation with a radial basis function (RBF)
is one of the most successful methods for solving the problem of continuity of multi-
variable functions. With the implementation of the radial-based function, the solution to
the interpolation problem is given in the following form:

F(x) =
N

∑
i=1

ci · h(‖x− xi‖) (5)

where:

- x represents n-dimensional input vectors, as regression coefficients.
- xi represents n-dimensional vectors of the position of the point-of-learning dataset.
- ci represents the unknown interpolation coefficient.
- h(.) represents the radial basis function.
- ‖.‖ represents the Euclidean distance in multi-dimensional real space Rn.
- N represents the number of interpolation points.

The Gaussian function is used as a radial basis function in the common implementation
of the RBF network.

For cases where the learning dataset is ordinarily weighted with some noise, re-
searchers have shown that approximation gives better results than interpolation. Namely,
it is expected to filter the noise by means of approximation, in contrast to interpolation
where the hyper-plane passes exactly through all points of the learning dataset. Therefore,
it seems that it is not necessary to compute the distance of all N points of the learning data
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set. Therefore, Broomhead and Lowe [49] suggested selecting K points (called the centre),
where K < N. Now, Equation (5) has the form:

F(x) =
K

∑
j=1

cj · h
(
‖x− tj‖

)
(6)

where:

- tj represents n-dimensional vectors of the centre of the radial basis function.
- K represents the index of the neuron of the hidden layer.

With the assumption that the number of centres K is less than the number of points
N, the number and position of the centres of the neurons of the hidden layers have been
determined in the learning procedure. Then, Euclidean distances of the input vector have
been calculated for the neurons of the hidden layer h (‖xi − tj‖). In this way, a rectangular
matrix (NxX) of the values of the hidden layer has been computed (H)ij = h (‖xi − tj‖).
The implementation of N interpolation conditions leads to a system of N linear equations
with K unknown terms. Following that, the optimal solution has been calculated with
a pseudo inversion of the matrix H. The final solution represents the approximation of
the multivariable function. Since the radial basis neural network (RBNN) models are
simple to use and implement, at the same time showing very good learning abilities
and generalization abilities, they are very often used in different research studies and in
industrial practice.

The RBNN model used for predicting the output of the three-variable function f (x),
x = [x1,x2,x3]T, is shown in Figure 8.
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The same model was used in this research. Generally, the RBF network consists of
three completely different layers. The input layer, in this case, consists of three neurons,
and the output layer consists of one neuron. The number of neurons in the hidden layer is
equal to the number of K centres.

Five physical variables, namely, Ra, VB, Fx, Fy and Fz, were modelled using the above-
mentioned network architecture. Firstly, the training was completed, and then the testing
was performed in order to check the generalization ability. Tests were conducted with the
new set of data. For both training and testing, MATALB’s neural network toolbox was
used [50].

3. Results

The measured values of Ra, VB, Fx, Fy and Fz, obtained by 30 experiments for hard
milling under CCAC conditions are presented in Table 6. Similar tables for hard milling
under CFs and dry machining conditions can be found in the Supplementary Materials.
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Table 6. Measured experimental data for hard milling under CCAC conditions.

Exp.
Number

Input Variables Output Variables

vc
[m/Min]

ft
[mm/Tooth]

ae
[mm]

t
[Min]

Fx
[N]

Fy
[N]

Fz
[N]

VB
[mm]

Ra
[µm]

1 70 0.05 1 10 335.31 789.89 64.36 0.033 0.20

2 120 0.05 1 10 299.31 650.45 68.13 0.042 0.22

3 70 0.11 1 10 457.74 1025.83 70.07 0.041 0.37

4 120 0.11 1 10 400.45 894.56 74.11 0.052 0.26

5 70 0.05 2 10 285.56 816.93 72.29 0.041 0.22

6 120 0.05 2 10 251.23 705.56 62.26 0.046 0.25

7 70 0.11 2 10 406.89 1036.99 79.56 0.036 0.33

8 120 0.11 2 10 360.51 903.51 75.59 0.046 0.20

9 70 0.05 1 22 326.56 845.65 68.12 0.059 0.33

10 120 0.05 1 22 365.56 704.56 74.19 0.065 0.41

11 70 0.11 1 22 490.45 1123.12 83.64 0.073 0.46

12 120 0.11 1 22 456.85 975.65 82.80 0.089 0.38

13 70 0.05 2 22 340.23 905.62 89.67 0.056 0.26

14 120 0.05 2 22 334.45 845.56 83.07 0.067 0.32

15 70 0.11 2 22 459.69 1055.10 103.56 0.064 0.31

16 120 0.11 2 22 424.92 975.65 101.45 0.082 0.23

17 45 0.08 1.5 16 380.15 1001.89 68.45 0.043 0.32

18 145 0.08 1.5 16 330.16 734.56 70.45 0.072 0.26

19 95 0.02 1.5 16 280.56 480.65 61.53 0.068 0.29

20 95 0.14 1.5 16 500.12 910.46 90.48 0.095 0.39

21 95 0.08 0.5 16 401.23 945.93 68.95 0.043 0.29

22 95 0.08 2.5 16 338.56 1056.45 88.31 0.036 0.17

23 95 0.08 1.5 4 316.56 922.47 76.58 0.020 0.25

24 95 0.08 1.5 28 463.16 1103.10 109.65 0.074 0.42

25 95 0.08 1.5 16 370.15 999.26 83.39 0.048 0.21

26 95 0.08 1.5 16 350.12 1015.74 85.45 0.045 0.21

27 95 0.08 1.5 16 356.21 1002.54 81.25 0.047 0.23

28 95 0.08 1.5 16 361.56 1030.52 87.64 0.043 0.22

29 95 0.08 1.5 16 356.55 1003.91 84.12 0.046 0.24

30 95 0.08 1.5 16 367.56 1016.56 80.69 0.045 0.20

For the verification and testing of both RA and RBNN models, 10 additional exper-
iments were conducted. The input parameters and measured values of those additional
experiments are presented in Table 7.

A metallographic examination of the samples, hard machined in three different cutting
conditions, was performed. The metallography of certain samples is given in Figure 9.

3.1. Parametric Analysis of the Influence of Input Variables on the Milling Force Components, Tool
Wear and Surface Roughness

By applying regression analysis, the coefficients of regression, multi-regression fac-
tors, standard false evaluation and the value of the t-test were assessed. After omitting
insignificant factors, the mathematical models for the components of cutting force Fx, Fy,
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Fz, surface roughness Ra and tool wear VB were obtained. The obtained models enabled
the implementation of numerical simulations in which certain important input parameters
were varied in order to analyse the influence of certain parameters on the output values of
the process. The cutting speed (vc), feed per tooth (ft) and machining time (t) were selected
as significant input parameters.

Table 7. Additional measured experimental data for hard milling under CCAC conditions.

Exp.
Number

Input Variables Output Variables

vc
[m/Min]

ft
[mm/Tooth]

ae
[mm]

t
[Min]

Fx
[N]

Fy
[N]

Fz
[N]

VB
[mm]

Ra
[µm]

1 120 0.105 1.6 19 409.15 969.45 90.11 0.0738 0.25

2 82 0.06 1.5 15 325.46 919.65 77.65 0.0474 0.21

3 87 0.07 1.6 19 358.21 1007.45 87.41 0.0516 0.24

4 85 0.065 1.8 21 359.66 1004.23 92.16 0.0545 0.25

5 115 0.095 1.2 21 420.18 995.68 88.53 0.0731 0.32

6 102 0.1 1.9 21 418.22 1066.74 101.05 0.0699 0.24

7 107 0.11 1.5 22 454.65 1039.43 99.31 0.0745 0.31

8 112 0.092 1.7 19 385.74 1012.13 91.23 0.0631 0.22

9 117 0.087 1.9 21 385.11 1007.11 95.18 0.0636 0.22

10 114 0.108 1.0 22 464.85 1000.53 89.68 0.0826 0.38
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Analysis of the influence of the radial depth of the cut (ae) showed a very small
influence of the same on the selected output sizes compared to other processing parameters.
The depth of the cut in general has no direct influence on the surface roughness because
the height and form of the roughness profile are not dependent on the depth of the cut.
The same applies to tool wear where the influence of the cutting depth on it is minimal.
However, it is worth mentioning the phenomenon explained by the theory of dislocation,
showing the depth of cut is inversely proportional in relation to the tool wear, i.e., by
increasing the depth of cut, the tool wear decreases. Accordingly, the radial depth of the cut
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will not be considered during further analysis, i.e., a constant value of 1.5 mm was assumed.
Furthermore, the component of the milling force Fz, due to its small values compared to
the components Fx and Fy, was not taken into consideration.

Figure 10 shows the change in the value of cutting force components depending on
the change in cutting speed and machining time for the hard milling process.
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Figure 10. Response surface for the milling force components as a function of cutting speed and
machining time during hard milling under different machining conditions (ft = 0.05 mm/tooth,
ae = 1.5 mm).

As the cutting speed increases, the cutting force decreases. A higher cutting speed
at a constant feed per tooth presupposes a smaller amount of material removal for one
revolution of the tool, which is reflected in the smaller value of the force components Fx
and Fy. An increase in the values of Fx and Fy despite an increase in the cutting speed
appears after a certain duration of machining as a result of tool wear.

Figure 11 shows the change in the value of the tool flank wear and surface roughness
depending on the change in feed per tooth and machining time when hard milling with a
constant cutting speed and radial depth of cut.

During hard milling, the high temperatures generated in the cutting zone at higher
feeds reduce the strength and hardness of the tool material, which enables the occurrence
of different types of wear. In this case, the application of CCAC with the associated low
coolant (airflow) temperature is of great importance. The cooling effect of CCAC can be
attributed to the reduction of temperature in the cutting zone, which contributes to the
reduction of abrasive wear by maintaining the hardness of the tool material, and to the
reduction of heat-induced adhesive and diffusion wear, as shown in Figure 12. Machining
time has the highest impact on the value of surface roughness, followed by the feed per
tooth. Figure 13 shows the wear of the tool flank face and the roughness of the machined
surface during hard milling in different machining conditions correlated with the volume
of the removed material (V). The total volume of removed material V [mm3] was calculated
using the value of the material removal rate (MRR) as follows:

V = MRR× t (7)

For the milling process, MRR [mm3/min], as shown in Figure 7, is calculated with the
following equation:

MRR = apae ftnN (8)
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where N represents the number of cutting inserts.

3.2. RA and RBNN Models Simulation

The testing and training results of the RBNN model of flank tool wear for hard milling
under CCAC are shown in Figure 14. The coefficient of determination of R2 = 0.9986
shows that the presented RBNN model is representative, and 99.86% of deviations were
interpreted by the given model. The value of the predicted coefficient of determination
Rpred

2 of 0.9833 shows an outstanding ability to predict cutting tool flank wear using the
presented RBNN model. For comparison, the values of the coefficient of determination and
the predicted coefficient of determination of the RBNN model are higher than the same
coefficients of the RA model (R2 = 0.9862; Rpred

2 = 0.9559).
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Figure 11. Response surface for the tool flank wear and surface roughness as a function of feed per
tooth and machining time during hard milling under different machining conditions (vc = 125 m/min,
ae = 1.5 mm).

The results of predicting tool wear using the RA and RBNN models for hard milling
under CCAC conditions are given in Table 8. A smaller average relative prediction error
was achieved in the case of the RBNN model (3.92%). The higher average relative error of
prediction of the RA model (4.38%) shows a weaker ability to predict tool wear compared
to the prediction of the RBNN model.

3.3. Optimizing the Number and Type of Input Variables of RBNN in Order to Improve the
Prediction Ability

Different RBNN models are formed considering different numbers and types (repre-
senting the input parameter) of input layer neurons. Table 9 presents 16 different RBNN
models in addition to the RA model. The presented models are divided into three groups.
The first group consists of models with four input sizes or four neurons in the input layer,
the second with five neurons of the input layer, and the third group represents models with
six or more neurons in the input layer. The number of hidden layer neurons depends on
the number of training data and the number of input layer neurons. The position of the
centre of the neuron of the hidden layer is fixed, and it is chosen by random selection. Since
these are models intended for predicting tool wear, there is only one neuron in the output
layer that represents the tool flank wear (VB).
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Figure 15 shows the results of the comparison of tool wear prediction models di-
vided into groups according to the number of input layer neurons for hard milling under
CCAC conditions.
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Table 8. Testing of the RA and RBNN model’s capability for flank tool wear prediction (hard
milling, CCAC).

Exp.
Number

Input Variables Output Prediction Relative Error

vc
[m/Min]

ft
[mm/tooth]

ae
[mm]

t
[min]

VB
[mm]

RA
(%)

RBNN
(%)

1 120 0.105 1.6 19 0.0738 0.0739 0.0742 0.14 0.54

2 82 0.06 1.5 15 0.0474 0.0425 0.0484 10.34 2.11

3 87 0.07 1.6 19 0.0516 0.0498 0.0544 3.49 5.43

4 85 0.065 1.8 21 0.0545 0.0532 0.0572 2.39 4.95

5 115 0.095 1.2 21 0.0731 0.0714 0.0762 2.33 4.24

6 102 0.1 1.9 21 0.0699 0.0675 0.0693 3.43 0.86

7 107 0.11 1.5 22 0.0745 0.0809 0.0779 8.59 4.56

8 112 0.092 1.7 19 0.0631 0.0615 0.0661 2.54 4.75

9 117 0.087 1.9 21 0.0636 0.0678 0.0702 6.6 10.38

10 114 0.108 1 22 0.0826 0.0859 0.0837 4 1.33

Total average relative error (%) 4.38 3.92

Table 9. Overview of models used to predict flank tool wear.

Model
RA

RBNN

Input Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fx [N] - - × × × × × × × × × × × × × × ×

Fy [N] - - × × × × × × × × × × × × × × ×

Fz [N] - - × × × × × × × × × × × × × × ×

vc [m/min] × × - × - - - × - × - × × - × × ×

ft [m/min] × × - - × - - - × - × × - × × × ×

ae [mm] × × - - - × × - - × × - × × × - ×

t [min] × × × - - - × × × - - - × × - × ×

4 input
variables RA

4 neurons input
layer

5 neurons input
layer

6 neurons input
layer

7 neurons input
layer

Following the presented results, the best cases for each of the three groups were selected,
and detailed results of the tool wear prediction with relative errors are shown in Table 10.

Table 10. RBNN models with lowest prediction relative error (hard milling, CCAC).

Exp. Number Flank
Wear VB [mm]

MODEL—Tool Wear Prediction, VB [mm] Relative Error [%]

RBNN 1 RBNN 7 RBNN 16
RBNN 1 RBNN 7 RBNN 16

vc, ft, ae, t Fx, Fy, Fz, ve, t Fx, Fy, Fz, vc, ft, ae, t

1 0.0738 0.0742 0.0671 0.0694 0.54 9.08 5.96

2 0.0474 0.0484 0.0452 0.0459 2.11 4.64 3.16

3 0.0516 0.0544 0.0508 0.0513 5.43 1.55 0.58

4 0.0545 0.0572 0.0539 0.0534 4.95 1.10 2.02

5 0.0731 0.0762 0.0697 0.0724 4.24 4.65 0.96

6 0.0699 0.0693 0.0705 0.0707 0.86 0.86 1.14

7 0.0745 0.0779 0.0761 0.0774 4.56 2.15 3.89

8 0.0631 0.0661 0.0637 0.0609 4.75 0.95 3.49

9 0.0636 0.0702 0.0628 0.0654 10.38 1.26 2.83

10 0.0826 0.0837 0.0783 0.0818 1.33 5.21 0.97

Total average relative error (%): 3.92 3.14 2.50
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4. Discussion

The results of tool wear during hard milling under the CF conditions showed higher
wear values compared to DM and CCAC conditions, as shown in Figure 12. Such a phe-
nomenon can be explained by looking at Figure 16, which shows the tool flank wear depending
on the time of cutting insert engagement under CF conditions. The picture shows the wear of
the TiAlN coating of the tool after 2 min of cutting insert engagement. The complexity of the
interaction between the tool material, the workpiece material and the chemical composition of
CFs at different temperatures and pressures caused a negative chemical reaction and sudden
wear of the TiAlN coating layer. Evidence that it is the case of TiAlN coating wear rather
than some of the expected wear mechanisms is shown in Figure 16. Regarding “Detail A”,
the preserved cutting edge of the cutting insert above the wear area of the TiAlN coating is
clearly visible. A similar effect appeared in the study of Siow et al. [51] while hard milling
under flood lubrication. In the initial stage of machining, the coating at the tool centre was
delaminated, exposing the carbide substrate to attrition wear. The result of that was the
formation of cavities, which was followed by cracking and fracture.
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Figure 16. Sudden wear of the TiAlN coating due to a negative chemical reaction under CF conditions
and subsequent catastrophic wear of the tool flank surface (vc = 95 m/min, ft = 0.08 mm/tooth,
ae = 2.5 mm).

In this study, the same type of initial wear was observed after the first wear mea-
surements of the tool flank wear in all hard milling experiments under CF conditions.
These data point to the conclusion that the chemical composition of the emulsion, the
temperature of the emulsion, the flow and the method of application used do not satisfy
the requirements of the workpiece material and cutting tool materials and coatings used in
this study. Certain characteristics of the CF used are given in Table 4; however, the detailed
chemical composition remains unknown. Regarding the significant influence on the tool
flank wear, characterisation of CF Rhenus TU30 T requires a detailed analysis and can be
considered a possible topic of further research.

Despite the increase in the duration of the cutting insert engagement, hard milling
under the conditions of CCAC shows the stability of the cutting tool throughout all ex-
periments, as shown in Figure 12. The trend of increase in the surface roughness due
to the increase in cutting insert engagement duration is approximately the same for DM
and CCAC cutting conditions. However, cooling with low-temperature air prevents the
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negative impact of generated heat in the cutting zone resulting from high feed values. Part
of the generated heat that passes into the workpiece via conduction tends to create thermal
cracks on the processed surface [52]. The formed cracks are manifested in the deterioration
of the quality or increase in the roughness of the treated surface, especially in the case of
dry machining. The roughness of the machined surface under CF conditions cannot be
taken into consideration because high roughness values are the result of catastrophic tool
wear, the causes of which have been previously explained. Overall, the poor machinability
of hard milling under CF conditions in terms of the high value of tool wear and surface
roughness is greatly influenced by the material and the properties of the workpiece together
with the cutting tool coating. As mentioned in a previous study by Beake et al. [53], tool
performance is strongly correlated to the micro-mechanical properties of the coatings. Fol-
lowing that, the importance of choosing the right cutting insert coating when performing
hard milling is crucial. Failing to do so can end up in experiencing a tool lifetime two times
shorter than expected, which proved to be the case in this study.

As expected, the tool flank wear has a constant tendency to increase with cutting time,
as shown in Figure 13a. Of the input parameters, cutting speed has the greatest influence
on tool wear, while the feed per tooth has a slightly smaller influence when compared to the
cutting speed. Figure 13a presents the tool durability for machining under different cutting
conditions when using the cutting parameters of experiment number 4, as seen in Table 5.
The durability of the cutting tool, T [min], was calculated regarding the time in which the
cutting tool reached the value of critical flank wear of VBcritical 0.15 mm. This particular
value was adopted after performing preliminary experiments and obtaining results that
indicated a sudden increase in the value of cutting force components and surface roughness
when the tool flank wear reaches the critical value of 0.15 m. The average tool durability for
hard milling under CCAC showed an increase of 26% compared to DM. The cutting tool
under the conditions of CCAC proved to be more than two times more durable than the
same tool used for hard milling under CF conditions. The reason for such a huge difference
lies in the effect of choosing the wrong PVD coating, as already explained and presented in
the results of previous studies [53].

When measuring the surface roughness, the smallest impact of a change in input
parameters on the Ra value was recorded for CCAC conditions. The values achieved
during hard milling under CCAC ranged from Ra = 0.2 ÷ 0.4 µm, with an average value
of Ra = 0.28 µm (median M = 0.26), which corresponds to roughness classes N4 and N5.
Such surface roughness results are comparable to those obtained in grinding procedures,
so in this case, the use of hard milling can be considered technologically justified. An
examination of the metallographic images revealed that no white layer appeared in any
experiment, which confirms that the processing parameters and tool wear criterion were
correctly selected.

All the positive results of hard milling under the CCAC conditions presented in this
study are confirmation that such a technique covers all aspects of sustainability and fulfils
all the conditions of sustainable manufacturing.

The methods and testing of tool wear prediction with the RA and RBNN models point
to the advantages of the neural network method and the associated RBNN model. The
advantages are manifested in a more faithful description of the actual wearing process,
which is clearly visible from the graphic display when comparing both response surface
models, as shown in Figure 17. In addition, better prediction of tool wear was observed
for RBNN with a total average relative error of 3.92% determined by testing the results of
additional experiments that were not used in the formation of the model. As proven from
previously conducted studies [54], a smaller relative average prediction error indicates the
good ability of the RBNN model when predicting tool flank wear.
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Figure 17. RA and RBNN response surface models for the tool flank wear as a function of cutting
speed and machining time during hard milling under conditions of CCAC (ft = 0.08 mm/tooth,
ae = 1.5 mm).

In order to further improve the prediction ability of the presented RBNN model,
the optimisation of the number and type of input layer neurons was conducted. The
comparison of tool wear prediction models divided into groups according to the number
of input layer neurons for hard milling under CCAC conditions, as presented in Figure 15,
highlights one model from each group with the best prediction result. Following those
results, the three best models were compared pointing out RBNN 16 as the most precise
model when predicting the tool flank wear. However, a possible disadvantage of the
RBNN16 model is the longer data processing time, which can have the effect of a delayed
reaction when there is a need for an instant change of the worn tool. In that case, other
models with a smaller number of input layer neurons should be considered, such as RBNN7
and RBNN 1. It is worth mentioning that the RBNN 2 model with a relative prediction error
of 3.97%, just 0.05% higher than that of RBNN1, also presents a possible optimal solution
in this case. The reason for that is the type of input layer neurons of RBNN2, namely,
Fx, Fy, Fz and t, makes it ideal for the creation of an on-line tool condition monitoring
system, which would be a huge step towards smart manufacturing. The main task of
such a system would be the real-time processing of the obtained information collected
by the piezoelectric dynamometer for measuring the cutting force components, as shown
in Figure 6, and using the RBNN model when deciding on the timely replacement of the
tool considering predicted tool flank wear. Since neural networks have been proven to be
fast and reliable algorithms in different everyday applications such as face recognition or
language translation [55], in the same way, they could be used during ongoing machining
processes to predict any machining parameter based on live data collection.

Future research directions lay within developing the monitoring system using the
presented RBNN model together with an investigation of the machine tool system’s energy
consumption for different machining conditions (DM, CFs and CCAC) and the possibilities
of increasing its efficiency by using Digital Twin technologies.

5. Conclusions

It has become essential in modern manufacturing industries to ensure higher produc-
tivity and product quality while embracing industry 4.0/5.0 technologies. In this study,
extensive experimental research was conducted on the machining process in the form of
hard milling under different cutting conditions, namely, CCAC, DM and CFs. The efficiency
of the process was evaluated by measuring variables such as Ra, VB and three orthogonal
cutting force components, Fx, Fy and Fz. Based on detailed and extensive experiments, the
following conclusions can be drawn from the presented study:

1. The CCAC technique fulfils functional aspects and all the sustainability aspects as
an alternative type of cooling within the machining process, while not having any
serious drawbacks.
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2. The lowest average tool flank wear of 0.05 mm was achieved when hard milling under
CCAC cutting conditions, followed by DM with an average VB value of 0.08 mm and
CFs with an average VB value of 0.17 mm.

3. The technological justification of the CCAC technique was achieved as a result of the
lowest measured surface roughness compared to DM and CFs. The surface roughness
value measured during hard milling under CCAC with an average of Ra = 0.28 µm
corresponds to roughness classes N4 and N5, which are comparable to those obtained
in grinding procedures.

4. The average tool durability for hard milling under CCAC showed an increase of 26%
compared to DM. Tool durability proved to be more than two times lower in the case
of hard milling under the CFs condition.

5. The proposed RBNN model can be utilized for tool flank wear prediction with better
accuracy compared to the RA model.

6. Optimisation of the number and type of input layer neurons resulted in choosing
RBNN 2 with four input layer neurons (Fx, Fy, Fz and t) and a relative prediction
error of 3.97% as the optimal choice for the creation of a future on-line tool condition
monitoring system as part of the Industry 4.0/5.0 paradigm.

7. The CCAC technique using a vortex tube for hard milling was proven to be an efficient
and sustainable solution for smart manufacturing.
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