Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1254014

Machine Learning Approach towards LoRaWAN Indoor Localization


Perković, Toni; Dujić Rodić, Lea; Šabić, Josip; Šolić, Petar
Machine Learning Approach towards LoRaWAN Indoor Localization // Electronics (Basel), 12 (2023), 2; 1-23 doi:10.3390/electronics12020457 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1254014 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine Learning Approach towards LoRaWAN Indoor Localization

Autori
Perković, Toni ; Dujić Rodić, Lea ; Šabić, Josip ; Šolić, Petar

Izvornik
Electronics (Basel) (2079-9292) 12 (2023), 2; 1-23

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Internet of Things ; LoRa ; LoRaWAN ; indoor localization ; neural networks

Sažetak
The growth of the Internet of Things (IoT) continues to be rapid, making it an essential part of information technology. As a result, IoT devices must be able to handle data collection, machine-to- machine (M2M) communication, and preprocessing of data, while also considering cost, processing power, and energy consumption. This paper introduces a system for device indoor localization that uses variations in the strength of the wireless signal. The proposed system addresses logistics use cases in which it is imperative to achieve reliable end-to- end delivery, such as pharmaceutic delivery, delivery of confidential documents and court exhibits, and even food, since the same is introduced into human organism and presents a potential risk of terrorist or other attack. This work proposes a concept based on low-power and low- cost LoRaWAN based system that utilizes a Machine Learning technique based on Neural Networks to achieve high accuracy in device indoor localization by measuring the signal strength of a beacon device. Furthermore, using signal strength measurements, that is, RSSI and SNR captured by LoRaWAN gateways, it is possible to estimate the location of the device point with an accuracy of up to 98.8%.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
UIP-2017-05-4206 - Internet stvari: istraživanja i primjene (IoTRA) (Šolić, Petar, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Lea Dujić Rodić (autor)

Avatar Url Toni Perković (autor)

Avatar Url Petar Šolić (autor)

Poveznice na cjeloviti tekst rada:

doi doi.org www.mdpi.com

Citiraj ovu publikaciju:

Perković, Toni; Dujić Rodić, Lea; Šabić, Josip; Šolić, Petar
Machine Learning Approach towards LoRaWAN Indoor Localization // Electronics (Basel), 12 (2023), 2; 1-23 doi:10.3390/electronics12020457 (međunarodna recenzija, članak, znanstveni)
Perković, T., Dujić Rodić, L., Šabić, J. & Šolić, P. (2023) Machine Learning Approach towards LoRaWAN Indoor Localization. Electronics (Basel), 12 (2), 1-23 doi:10.3390/electronics12020457.
@article{article, author = {Perkovi\'{c}, Toni and Duji\'{c} Rodi\'{c}, Lea and \v{S}abi\'{c}, Josip and \v{S}oli\'{c}, Petar}, year = {2023}, pages = {1-23}, DOI = {10.3390/electronics12020457}, keywords = {Internet of Things, LoRa, LoRaWAN, indoor localization, neural networks}, journal = {Electronics (Basel)}, doi = {10.3390/electronics12020457}, volume = {12}, number = {2}, issn = {2079-9292}, title = {Machine Learning Approach towards LoRaWAN Indoor Localization}, keyword = {Internet of Things, LoRa, LoRaWAN, indoor localization, neural networks} }
@article{article, author = {Perkovi\'{c}, Toni and Duji\'{c} Rodi\'{c}, Lea and \v{S}abi\'{c}, Josip and \v{S}oli\'{c}, Petar}, year = {2023}, pages = {1-23}, DOI = {10.3390/electronics12020457}, keywords = {Internet of Things, LoRa, LoRaWAN, indoor localization, neural networks}, journal = {Electronics (Basel)}, doi = {10.3390/electronics12020457}, volume = {12}, number = {2}, issn = {2079-9292}, title = {Machine Learning Approach towards LoRaWAN Indoor Localization}, keyword = {Internet of Things, LoRa, LoRaWAN, indoor localization, neural networks} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font