Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1252971

Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics


Demir, Hasan; Demir, Hande; Lončar, Biljana; Pezo, Lato; Brandić, Ivan; Voća, Neven; Yilmaz, Fatma
Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics // Energies, 16(4) (2023), 1687, 14 doi:10.3390/en16041687 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1252971 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics

Autori
Demir, Hasan ; Demir, Hande ; Lončar, Biljana ; Pezo, Lato ; Brandić, Ivan ; Voća, Neven ; Yilmaz, Fatma

Izvornik
Energies (1996-1073) 16(4) (2023); 1687, 14

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
drying of capers ; response surface method ; vacuum drying ; specific energy consumption ; artificial neural network ; refractive window drying

Sažetak
One of the essential factors for the selection of the drying process is energy consumption. This study intended to optimize the drying treatment of capers using convection (CD), refractive window (RWD), and vacuum drying (VD) combined with ultrasonic pretreatment by a comparative approach among artificial neural networks (ANN) and response surface methodology (RSM) focusing on the specific energy consumption (SEC). For this purpose, the effects of drying temperature (50, 60, 70 ◦C), ultrasonication time (0, 20, 40 min), and drying method (RWD, CD, VD) on the SEC value (MJ/g) were tested using a face-centered central composite design (FCCD). RSM (R 2 : 0.938) determined the optimum drying-temperature– ultrasonication-time values that minimize SEC as ; 50 ◦C-35.5 min, 70 ◦C-40 min and 70 ◦C-24 min for RWD, CD and VD, respectively. The conduct of the ANN model is evidenced by the correlation coefficient for training (0.976), testing (0.971) and validation (0.972), which shows the high suitability of the model for optimising specific energy consumption (SEC).

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Ivan Brandić (autor)

Avatar Url Neven Voća (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Demir, Hasan; Demir, Hande; Lončar, Biljana; Pezo, Lato; Brandić, Ivan; Voća, Neven; Yilmaz, Fatma
Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics // Energies, 16(4) (2023), 1687, 14 doi:10.3390/en16041687 (međunarodna recenzija, članak, znanstveni)
Demir, H., Demir, H., Lončar, B., Pezo, L., Brandić, I., Voća, N. & Yilmaz, F. (2023) Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics. Energies, 16(4), 1687, 14 doi:10.3390/en16041687.
@article{article, author = {Demir, Hasan and Demir, Hande and Lon\v{c}ar, Biljana and Pezo, Lato and Brandi\'{c}, Ivan and Vo\'{c}a, Neven and Yilmaz, Fatma}, year = {2023}, pages = {14}, DOI = {10.3390/en16041687}, chapter = {1687}, keywords = {drying of capers, response surface method, vacuum drying, specific energy consumption, artificial neural network, refractive window drying}, journal = {Energies}, doi = {10.3390/en16041687}, volume = {16(4)}, issn = {1996-1073}, title = {Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics}, keyword = {drying of capers, response surface method, vacuum drying, specific energy consumption, artificial neural network, refractive window drying}, chapternumber = {1687} }
@article{article, author = {Demir, Hasan and Demir, Hande and Lon\v{c}ar, Biljana and Pezo, Lato and Brandi\'{c}, Ivan and Vo\'{c}a, Neven and Yilmaz, Fatma}, year = {2023}, pages = {14}, DOI = {10.3390/en16041687}, chapter = {1687}, keywords = {drying of capers, response surface method, vacuum drying, specific energy consumption, artificial neural network, refractive window drying}, journal = {Energies}, doi = {10.3390/en16041687}, volume = {16(4)}, issn = {1996-1073}, title = {Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics}, keyword = {drying of capers, response surface method, vacuum drying, specific energy consumption, artificial neural network, refractive window drying}, chapternumber = {1687} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font