Pregled bibliografske jedinice broj: 1252157
Estimation of Interaction Locations in Super Cryogenic Dark Matter Search Detectors Using Genetic Programming-Symbolic Regression Method
Estimation of Interaction Locations in Super Cryogenic Dark Matter Search Detectors Using Genetic Programming-Symbolic Regression Method // Applied sciences (Basel), 13 (2023), 4; 1-23 doi:10.3390/app13042059 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1252157 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimation of Interaction Locations in Super
Cryogenic Dark Matter Search Detectors Using
Genetic Programming-Symbolic Regression Method
Autori
Anđelić, Nikola ; Baressi Šegota, Sandi ; Glučina, Matko ; Car, Zlatan
Izvornik
Applied sciences (Basel) (2076-3417) 13
(2023), 4;
1-23
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
cross-validation ; genetic programming ; interaction location ; SuperCDMS ; symbolic regression
Sažetak
The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is used to search for Weakly Interacting Massive Particles (WIMPs)— candidates for dark matter particles. In this experiment, the WIMPs interact with nuclei in the detector ; however, there are many other interactions (background interactions). To separate background interactions from the signal, it is necessary to measure the interaction energy and to reconstruct the location of the interaction between WIMPs and the nuclei. In recent years, some research papers have been investigating the reconstruction of interaction locations using artificial intelligence (AI) methods. In this paper, a genetic programmingsymbolic regression (GPSR), with randomly tuned hyperparameters cross- validated via a five-fold procedure, was applied to the SuperCDMS experiment to estimate the interaction locations with high accuracy. To measure the estimation accuracy of obtaining the SEs, the mean and standard deviation (σ) values of R 2 , the root-mean-squared error (RMSE), and finally, the mean absolute error (MAE) were used. The investigation showed that using GPSR, SEs can be obtained that estimatethe interaction locations with high accuracy. To improve the solution, the five best SEs were combined from the three best cases. The results demonstrated that a very high estimation accuracy can be achieved with the proposed methodology
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Elektrotehnika, Računarstvo, Strojarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
--uniri-mladi-technic-22-61 - Energetska optimizacija industrijskih robotskih manipulatora primjenom algoritama evolucijskog računarstva (Anđelić, Nikola) ( CroRIS)
--uniri-mladi-technic-22-57 - Razvoj inteligentnog sustava za estimaciju točke maksimalne snage fotonaponskog sustava s primjenom na autonomna plovila (Lorencin, Ivan) ( CroRIS)
undefined
Profili:
Zlatan Car (autor)
Sandi Baressi Šegota (autor)
Nikola Anđelić (autor)
Matko Glučina (autor)
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.mdpi.com www.researchgate.netCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus