Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1248540

Topic Modeling for Tracking COVID-19 Communication on Twitter


Bogović, Petar Kristijan; Meštrović, Ana; Martinčić-Ipšić, Sanda
Topic Modeling for Tracking COVID-19 Communication on Twitter // Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science / Lopata, A. ; Gudonienė, D. ; Butkienė, R. (ur.).
Cham: Springer, 2022. str. 248-258 doi:10.1007/978-3-031-16302-9_19 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1248540 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Topic Modeling for Tracking COVID-19 Communication on Twitter

Autori
Bogović, Petar Kristijan ; Meštrović, Ana ; Martinčić-Ipšić, Sanda

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science / Lopata, A. ; Gudonienė, D. ; Butkienė, R. - Cham : Springer, 2022, 248-258

ISBN
978-3-031-16301-2

Skup
Information and Software Technologies (ICIST 2022)

Mjesto i datum
Kaunas, Litva, 12.10.2022. - 14.10.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Topic modeling ; Latent Dirichlet Allocation ; Coherence score ; Croatian tweets ; COVID-19 infodemic

Sažetak
In this study, we analyze the trends of COVID-19 related communication in Croatian language on Twitter. First, we prepare a dataset of 147, 028 tweets about COVID-19 posted during the first three waves of the pandemic, and then perform an analysis in three steps. In the first step, we train the LDA model and calculate the coherence values of the topics. We identify seven topics and report the ten most frequent words for each topic. In the second step, we analyze the proportion of tweets in each topic and report how these trends change over time. In the third step, we study spreading properties for each topic. The results show that all seven topics are evenly distributed across the three pandemic waves. The topic “vaccination” stands out with the change in percentage from 14.6% tweets in the first wave to 25.7% in the third wave. The obtained results contribute to a better understanding of pandemic communication in social media in Croatia.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-CORONA-2020-04-2061 - Višeslojni okvir za karakterizaciju širenja informacija putem društvenih medija tijekom krize COVID-19 (InfoCoV) (Meštrović, Ana, HRZZ - 2020-04) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-drustv-18-20 - Izlučivanje ključnih riječi i sažimanje tekstova na temelju reprezentacije u mrežama jezika-LangNet (LangNet) (Martinčić-Ipšić, Sanda, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)

Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Bogović, Petar Kristijan; Meštrović, Ana; Martinčić-Ipšić, Sanda
Topic Modeling for Tracking COVID-19 Communication on Twitter // Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science / Lopata, A. ; Gudonienė, D. ; Butkienė, R. (ur.).
Cham: Springer, 2022. str. 248-258 doi:10.1007/978-3-031-16302-9_19 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Bogović, P., Meštrović, A. & Martinčić-Ipšić, S. (2022) Topic Modeling for Tracking COVID-19 Communication on Twitter. U: Lopata, A., Gudonienė, D. & Butkienė, R. (ur.)Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science doi:10.1007/978-3-031-16302-9_19.
@article{article, author = {Bogovi\'{c}, Petar Kristijan and Me\v{s}trovi\'{c}, Ana and Martin\v{c}i\'{c}-Ip\v{s}i\'{c}, Sanda}, year = {2022}, pages = {248-258}, DOI = {10.1007/978-3-031-16302-9\_19}, keywords = {Topic modeling, Latent Dirichlet Allocation, Coherence score, Croatian tweets, COVID-19 infodemic}, doi = {10.1007/978-3-031-16302-9\_19}, isbn = {978-3-031-16301-2}, title = {Topic Modeling for Tracking COVID-19 Communication on Twitter}, keyword = {Topic modeling, Latent Dirichlet Allocation, Coherence score, Croatian tweets, COVID-19 infodemic}, publisher = {Springer}, publisherplace = {Kaunas, Litva} }
@article{article, author = {Bogovi\'{c}, Petar Kristijan and Me\v{s}trovi\'{c}, Ana and Martin\v{c}i\'{c}-Ip\v{s}i\'{c}, Sanda}, year = {2022}, pages = {248-258}, DOI = {10.1007/978-3-031-16302-9\_19}, keywords = {Topic modeling, Latent Dirichlet Allocation, Coherence score, Croatian tweets, COVID-19 infodemic}, doi = {10.1007/978-3-031-16302-9\_19}, isbn = {978-3-031-16301-2}, title = {Topic Modeling for Tracking COVID-19 Communication on Twitter}, keyword = {Topic modeling, Latent Dirichlet Allocation, Coherence score, Croatian tweets, COVID-19 infodemic}, publisher = {Springer}, publisherplace = {Kaunas, Litva} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font