Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1247800

Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity


Orsag, Luka; Stipančić, Tomislav; Koren, Leon
Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity // Sensors, 23 (2023), 3; 1283-1297 doi:10.3390/s23031283 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1247800 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity

Autori
Orsag, Luka ; Stipančić, Tomislav ; Koren, Leon

Izvornik
Sensors (1424-8220) 23 (2023), 3; 1283-1297

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
human–robot collaboration ; activity recognition ; deep learning ; LSTM ; safe HCI ; adaptive manufacturing systems ; robotics

Sažetak
Most industrial workplaces involving robots and other apparatus operate behind the fences to remove defects, hazards, or casualties. Recent advancements in machine learning can enable robots to co- operate with human co-workers while retaining safety, flexibility, and robustness. This article focuses on the computation model, which provides a collaborative environment through intuitive and adaptive human–robot interaction (HRI). In essence, one layer of the model can be expressed as a set of useful information utilized by an intelligent agent. Within this construction, a vision-sensing modality can be broken down into multiple layers. The authors propose a human-skeleton-based trainable model for the recognition of spatiotemporal human worker activity using LSTM networks, which can achieve a training accuracy of 91.365%, based on the InHARD dataset. Together with the training results, results related to aspects of the simulation environment and future improvements of the system are discussed. By combining human worker upper body positions with actions, the perceptual potential of the system is increased, and human–robot collaboration becomes context-aware. Based on the acquired information, the intelligent agent gains the ability to adapt its behavior according to its dynamic and stochastic surroundings.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Strojarstvo



POVEZANOST RADA


Projekti:
HRZZ-UIP-2020-02-7184 - Afektivna multimodalna interakcija temeljena na konstruiranoj robotskoj spoznaji (AMICORC) (Stipančić, Tomislav, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Tomislav Stipančić (autor)

Avatar Url Luka Orsag (autor)

Avatar Url Leon Koren (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Orsag, Luka; Stipančić, Tomislav; Koren, Leon
Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity // Sensors, 23 (2023), 3; 1283-1297 doi:10.3390/s23031283 (međunarodna recenzija, članak, znanstveni)
Orsag, L., Stipančić, T. & Koren, L. (2023) Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity. Sensors, 23 (3), 1283-1297 doi:10.3390/s23031283.
@article{article, author = {Orsag, Luka and Stipan\v{c}i\'{c}, Tomislav and Koren, Leon}, year = {2023}, pages = {1283-1297}, DOI = {10.3390/s23031283}, keywords = {human–robot collaboration, activity recognition, deep learning, LSTM, safe HCI, adaptive manufacturing systems, robotics}, journal = {Sensors}, doi = {10.3390/s23031283}, volume = {23}, number = {3}, issn = {1424-8220}, title = {Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity}, keyword = {human–robot collaboration, activity recognition, deep learning, LSTM, safe HCI, adaptive manufacturing systems, robotics} }
@article{article, author = {Orsag, Luka and Stipan\v{c}i\'{c}, Tomislav and Koren, Leon}, year = {2023}, pages = {1283-1297}, DOI = {10.3390/s23031283}, keywords = {human–robot collaboration, activity recognition, deep learning, LSTM, safe HCI, adaptive manufacturing systems, robotics}, journal = {Sensors}, doi = {10.3390/s23031283}, volume = {23}, number = {3}, issn = {1424-8220}, title = {Towards a Safe Human–Robot Collaboration Using Information on Human Worker Activity}, keyword = {human–robot collaboration, activity recognition, deep learning, LSTM, safe HCI, adaptive manufacturing systems, robotics} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font