Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1247187

Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms


Đuranović, Daniel; Baressi Šegota, Sandi; Lorencin, Ivan; Car, Zlatan
Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms // Sensors, 23 (2023), 3; 1224, 31 doi:10.3390/s23031224 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1247187 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms

Autori
Đuranović, Daniel ; Baressi Šegota, Sandi ; Lorencin, Ivan ; Car, Zlatan

Izvornik
Sensors (1424-8220) 23 (2023), 3; 1224, 31

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial intelligence ; convolutional neural network ; object detection ; YOLO ; venusian volcanoes ; Magellan data set

Sažetak
Imaging is one of the main tools of modern astronomy—many images are collected each day, and they must be processed. Processing such a large amount of images can be complex, time-consuming, and may require advanced tools. One of the techniques that may be employed is artificial intelligence (AI)-based image detection and classification. In this paper, the research is focused on developing such a system for the problem of the Magellan dataset, which contains 134 satellite images of Venus’s surface with individual volcanoes marked with circular labels. Volcanoes are classified into four classes depending on their features. In this paper, the authors apply the You-Only-Look-Once (YOLO) algorithm, which is based on a convolutional neural network (CNN). To apply this technique, the original labels are first converted into a suitable YOLO format. Then, due to the relatively small number of images in the dataset, deterministic augmentation techniques are applied. Hyperparameters of the YOLO network are tuned to achieve the best results, which are evaluated as mean average precision (mAP@0.5) for localization accuracy and F1 score for classification accuracy. The experimental results using cross-vallidation indicate that the proposed method achieved 0.835 mAP@0.5 and 0.826 F1 scores, respectively.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
--uniri-mladi-technic-22-61 - Energetska optimizacija industrijskih robotskih manipulatora primjenom algoritama evolucijskog računarstva (Anđelić, Nikola) ( CroRIS)
--uniri-mladi-technic-22-57 - Razvoj inteligentnog sustava za estimaciju točke maksimalne snage fotonaponskog sustava s primjenom na autonomna plovila (Lorencin, Ivan) ( CroRIS)

Profili:

Avatar Url Zlatan Car (autor)

Avatar Url Sandi Baressi Šegota (autor)

Avatar Url Ivan Lorencin (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Đuranović, Daniel; Baressi Šegota, Sandi; Lorencin, Ivan; Car, Zlatan
Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms // Sensors, 23 (2023), 3; 1224, 31 doi:10.3390/s23031224 (međunarodna recenzija, članak, znanstveni)
Đuranović, D., Baressi Šegota, S., Lorencin, I. & Car, Z. (2023) Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms. Sensors, 23 (3), 1224, 31 doi:10.3390/s23031224.
@article{article, author = {\DJuranovi\'{c}, Daniel and Baressi \v{S}egota, Sandi and Lorencin, Ivan and Car, Zlatan}, year = {2023}, pages = {31}, DOI = {10.3390/s23031224}, chapter = {1224}, keywords = {artificial intelligence, convolutional neural network, object detection, YOLO, venusian volcanoes, Magellan data set}, journal = {Sensors}, doi = {10.3390/s23031224}, volume = {23}, number = {3}, issn = {1424-8220}, title = {Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms}, keyword = {artificial intelligence, convolutional neural network, object detection, YOLO, venusian volcanoes, Magellan data set}, chapternumber = {1224} }
@article{article, author = {\DJuranovi\'{c}, Daniel and Baressi \v{S}egota, Sandi and Lorencin, Ivan and Car, Zlatan}, year = {2023}, pages = {31}, DOI = {10.3390/s23031224}, chapter = {1224}, keywords = {artificial intelligence, convolutional neural network, object detection, YOLO, venusian volcanoes, Magellan data set}, journal = {Sensors}, doi = {10.3390/s23031224}, volume = {23}, number = {3}, issn = {1424-8220}, title = {Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms}, keyword = {artificial intelligence, convolutional neural network, object detection, YOLO, venusian volcanoes, Magellan data set}, chapternumber = {1224} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font