Pregled bibliografske jedinice broj: 1247187
Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms
Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms // Sensors, 23 (2023), 3; 1224, 31 doi:10.3390/s23031224 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1247187 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Localization and Classification of Venusian Volcanoes Using Image Detection Algorithms
Autori
Đuranović, Daniel ; Baressi Šegota, Sandi ; Lorencin, Ivan ; Car, Zlatan
Izvornik
Sensors (1424-8220) 23
(2023), 3;
1224, 31
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
artificial intelligence ; convolutional neural network ; object detection ; YOLO ; venusian volcanoes ; Magellan data set
Sažetak
Imaging is one of the main tools of modern astronomy—many images are collected each day, and they must be processed. Processing such a large amount of images can be complex, time-consuming, and may require advanced tools. One of the techniques that may be employed is artificial intelligence (AI)-based image detection and classification. In this paper, the research is focused on developing such a system for the problem of the Magellan dataset, which contains 134 satellite images of Venus’s surface with individual volcanoes marked with circular labels. Volcanoes are classified into four classes depending on their features. In this paper, the authors apply the You-Only-Look-Once (YOLO) algorithm, which is based on a convolutional neural network (CNN). To apply this technique, the original labels are first converted into a suitable YOLO format. Then, due to the relatively small number of images in the dataset, deterministic augmentation techniques are applied. Hyperparameters of the YOLO network are tuned to achieve the best results, which are evaluated as mean average precision (mAP@0.5) for localization accuracy and F1 score for classification accuracy. The experimental results using cross-vallidation indicate that the proposed method achieved 0.835 mAP@0.5 and 0.826 F1 scores, respectively.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
--uniri-mladi-technic-22-61 - Energetska optimizacija industrijskih robotskih manipulatora primjenom algoritama evolucijskog računarstva (Anđelić, Nikola) ( CroRIS)
--uniri-mladi-technic-22-57 - Razvoj inteligentnog sustava za estimaciju točke maksimalne snage fotonaponskog sustava s primjenom na autonomna plovila (Lorencin, Ivan) ( CroRIS)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE