Pregled bibliografske jedinice broj: 1244776
Low-sample classification in NIDS using the EC-GAN
Low-sample classification in NIDS using the EC-GAN // Journal of universal computer science, 28 (2022), 12; 1330-1346 doi:10.3897/jucs.85703 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1244776 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Low-sample classification in NIDS using the EC-GAN
Autori
Zekan, Marko ; Tomičić, Igor ; Schatten, Markus
Izvornik
Journal of universal computer science (0948-695X) 28
(2022), 12;
1330-1346
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
cybersecurity ; network security ; GAN ; NIDS ; synthetic tabular data ; classification ; semi-supervised learning ; Wasserstein GAN
Sažetak
Numerous advanced methods have been applied throughout the years for the use in Network Intrusion Detection Systems (NIDS). Among these are various Deep Learning models, which have shown great success for attack classification. Nevertheless, false positive rate and detection rate of these systems remains a concern. This is mostly because of the low-sample, imbalanced nature of realistic datasets, which make models challenging to train. Considering this, we applied a novel semi-supervised EC-GAN method for network flow classifi- cation of CIC-IDS-2017 dataset. EC-GAN uses synthetic data to aid the training of a supervised classifier on low- sample data. To achieve this, we modified the original EC-GAN to work with tabular data. In our approach, WCGAN-GP is used for synthetic tabular data generation, while a simple deep neural network is used for classification. The conditional nature of WCGAN-GP diminishes the class imbalance problem, while GAN itself solves the low-sample problem. This approach was successful in generating believable synthetic data, which was consequently used for training and testing the EC-GAN. To obtain our results, we trained a classifier on progressively smaller versions of the CIC-DIS-2017 dataset, first via a novel EC-GAN method and then in the conventional way, without the help of synthetic data. We then compared these two sets of results with another author’s results using accuracy, false positive rate, detection rate and macro F1 score as metrics. Our results showed that supervised classifier trained with EC-GAN can achieve significant results even when trained on as little as 25% of the original imbalanced dataset.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
IP-2019-04-5824 - Orkestracija hibridnih metoda umjetne inteligencije za računalne igre (O-HAI 4 Games) (Schatten, Markus, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus