Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1244776

Low-sample classification in NIDS using the EC-GAN


Zekan, Marko; Tomičić, Igor; Schatten, Markus
Low-sample classification in NIDS using the EC-GAN // Journal of universal computer science, 28 (2022), 12; 1330-1346 doi:10.3897/jucs.85703 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1244776 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Low-sample classification in NIDS using the EC-GAN

Autori
Zekan, Marko ; Tomičić, Igor ; Schatten, Markus

Izvornik
Journal of universal computer science (0948-695X) 28 (2022), 12; 1330-1346

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
cybersecurity ; network security ; GAN ; NIDS ; synthetic tabular data ; classification ; semi-supervised learning ; Wasserstein GAN

Sažetak
Numerous advanced methods have been applied throughout the years for the use in Network Intrusion Detection Systems (NIDS). Among these are various Deep Learning models, which have shown great success for attack classification. Nevertheless, false positive rate and detection rate of these systems remains a concern. This is mostly because of the low-sample, imbalanced nature of realistic datasets, which make models challenging to train. Considering this, we applied a novel semi-supervised EC-GAN method for network flow classifi- cation of CIC-IDS-2017 dataset. EC-GAN uses synthetic data to aid the training of a supervised classifier on low- sample data. To achieve this, we modified the original EC-GAN to work with tabular data. In our approach, WCGAN-GP is used for synthetic tabular data generation, while a simple deep neural network is used for classification. The conditional nature of WCGAN-GP diminishes the class imbalance problem, while GAN itself solves the low-sample problem. This approach was successful in generating believable synthetic data, which was consequently used for training and testing the EC-GAN. To obtain our results, we trained a classifier on progressively smaller versions of the CIC-DIS-2017 dataset, first via a novel EC-GAN method and then in the conventional way, without the help of synthetic data. We then compared these two sets of results with another author’s results using accuracy, false positive rate, detection rate and macro F1 score as metrics. Our results showed that supervised classifier trained with EC-GAN can achieve significant results even when trained on as little as 25% of the original imbalanced dataset.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
IP-2019-04-5824 - Orkestracija hibridnih metoda umjetne inteligencije za računalne igre (O-HAI 4 Games) (Schatten, Markus, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Markus Schatten (autor)

Avatar Url Igor Tomičić (autor)

Poveznice na cjeloviti tekst rada:

doi lib.jucs.org

Citiraj ovu publikaciju:

Zekan, Marko; Tomičić, Igor; Schatten, Markus
Low-sample classification in NIDS using the EC-GAN // Journal of universal computer science, 28 (2022), 12; 1330-1346 doi:10.3897/jucs.85703 (međunarodna recenzija, članak, znanstveni)
Zekan, M., Tomičić, I. & Schatten, M. (2022) Low-sample classification in NIDS using the EC-GAN. Journal of universal computer science, 28 (12), 1330-1346 doi:10.3897/jucs.85703.
@article{article, author = {Zekan, Marko and Tomi\v{c}i\'{c}, Igor and Schatten, Markus}, year = {2022}, pages = {1330-1346}, DOI = {10.3897/jucs.85703}, keywords = {cybersecurity, network security, GAN, NIDS, synthetic tabular data, classification, semi-supervised learning, Wasserstein GAN}, journal = {Journal of universal computer science}, doi = {10.3897/jucs.85703}, volume = {28}, number = {12}, issn = {0948-695X}, title = {Low-sample classification in NIDS using the EC-GAN}, keyword = {cybersecurity, network security, GAN, NIDS, synthetic tabular data, classification, semi-supervised learning, Wasserstein GAN} }
@article{article, author = {Zekan, Marko and Tomi\v{c}i\'{c}, Igor and Schatten, Markus}, year = {2022}, pages = {1330-1346}, DOI = {10.3897/jucs.85703}, keywords = {cybersecurity, network security, GAN, NIDS, synthetic tabular data, classification, semi-supervised learning, Wasserstein GAN}, journal = {Journal of universal computer science}, doi = {10.3897/jucs.85703}, volume = {28}, number = {12}, issn = {0948-695X}, title = {Low-sample classification in NIDS using the EC-GAN}, keyword = {cybersecurity, network security, GAN, NIDS, synthetic tabular data, classification, semi-supervised learning, Wasserstein GAN} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font