Pregled bibliografske jedinice broj: 1243847
Single-crystalline nanoribbon network field effect transistors from arbitrary two-dimensional materials
Single-crystalline nanoribbon network field effect transistors from arbitrary two-dimensional materials // Npj 2D Materials and Applications, 6 (2022), 76, 9 doi:10.1038/s41699-022-00356-y (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1243847 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Single-crystalline nanoribbon network field effect
transistors from arbitrary two-dimensional
materials
Autori
Aslam, Muhammad Awais ; Tran, Tuan Hoang ; Supina, Antonio ; Siri, Olivier ; Meunier, Vincent ; Watanabe, Kenji ; Taniguchi, Takashi ; Kralj, Marko ; Teichert, Christian ; Sheremet, Evgeniya ; Rodriguez, Raul D. ; Matković, Aleksandar
Izvornik
Npj 2D Materials and Applications (2397-7132) 6
(2022);
76, 9
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
2D materials ; graphene ; transition metal dichalcogenides ; nanoribbon ; field effect transistor ; FET
Sažetak
The last decade has seen a flurry of studies related to graphene nanoribbons owing to their potential applications in the quantum realm. However, little experimental work has been reported towards nanoribbons of other 2D materials. Here, we propose a universal approach to synthesize high-quality networks of nanoribbons from arbitrary 2D materials while maintaining high crystallinity, narrow size distribution, and straightforward device integrability. The wide applicability of this technique is demonstrated by fabricating molybednum disulphide, tungsten disulphide, tungsten diselenide, and graphene nanoribbon field effect transistors that inherently do not suffer from interconnection resistance. By relying on self-aligning organic nanostructures as masks, we demonstrate the possibility of controlling the predominant crystallographic direction of the nanoribbon’s edges. Electrical characterization shows record mobilities and very high ON currents despite extreme width scaling. Lastly, we explore decoration of nanoribbon edges with plasmonic particles paving the way for nanoribbon-based opto-electronic devices.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
POVEZANOST RADA
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus