Pregled bibliografske jedinice broj: 1243636
Using Autoencoders to Reduce Dimensionality of DICOM Metadata
Using Autoencoders to Reduce Dimensionality of DICOM Metadata // Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
Malé, Maldivi, 2022. str. 1-6 doi:10.1109/ICECCME55909.2022.9988310 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1243636 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using Autoencoders to Reduce Dimensionality of DICOM
Metadata
Autori
Mateja Napravnik ; Robert Baždarić ; Damir Miletić ; Franko Hržić ; Sebastian Tschauner ; Mihaela Mamula ; Ivan Štajduhar
Kolaboracija
Medical University of Graz, Graz, Austria
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
/ - , 2022, 1-6
Skup
International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2022)
Mjesto i datum
Malé, Maldivi, 16.11.2022. - 18.11.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
DICOM ; Autoencoders ; Medical Imaging ; Clustering
Sažetak
Digital Imaging and Communication in Medicine (DICOM) is a standardized format for storing medical images enriched with descriptive data. It consists of a number of informative header tags. E.g., these tags contain information concerning imaging technique, patient weight, patient age and so on. In machine learning, these tags can, among other things, be used for categorization, classification, and general manipulation of DICOM data. However, because of their number and variety, using them for automation undoubtedly impacts computational performance. To tackle this problem, the possibility of using auto encoders is explored in this manuscript. It was hypothesized that clustering data compressed with autoencoders can achieve the same results as when working with raw - uncompressed data. To support this claim, clustering of compressed and uncom- pressed data was performed on a dataset of 25, 000 DICOM files from the Clinical Hospital Centre Rijeka PACS. The results show no significant difference between compressed and uncompressed data (p > 0.05), thus confirming that equally good clustering results can be accomplished using a smaller representation.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti, Temeljne medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka
Profili:
Mateja Napravnik (autor)
Damir Miletić (autor)
Ivan Štajduhar (autor)
Franko Hržić (autor)
Robert Baždarić (autor)