Pregled bibliografske jedinice broj: 1243189
Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models
Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models // Energies, 16 (2023), 690, 10 doi:10.3390/en16020690 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1243189 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Energy Potentials of Agricultural Biomass and the
Possibility of Modelling Using RFR and SVM Models
Autori
Brandić, Ivan ; Antonović, Alan ; Pezo, Lato ; Matin, Božidar ; Krička, Tajana ; Jurišić, Vanja ; Špelić, Karlo ; Kontek, Mislav ; Kukuruzović, Juraj ; Grubor, Mateja ; Matin, Ana
Izvornik
Energies (1996-1073) 16
(2023);
690, 10
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
agricultural biomass ; higher heating value ; machine learning ; estimation ; energy potential
Sažetak
Agricultural biomass is one of the most important renewable energy sources. As a byproduct of corn, soybean and sunflower production, large amounts of biomass are produced that can be used as an energy source through conversion. In order to assess the quality and the possibility of the use of biomass, its composition and calorific value must be determined. The use of nonlinear models allows for an easier estimation of the energy properties of biomass concerning certain input and output parameters. In this paper, RFR (Random Forest Regression) and SVM (Support Vector Machine) models were developed to determine their capabilities in estimating the HHV (higher heating value) of biomass based on input parameters of ultimate analysis. The developed models showed good performance in terms of HHV estimation, confirmed by the coefficient of determination for the RFR (R2 = 0.79) and SVM (R2 = 0.93) models. The developed models have shown promising results in accurately predicting the HHV of biomass from various sources. The use of these algorithms for biomass energy prediction has the potential for further development.
Izvorni jezik
Engleski
Znanstvena područja
Biotehnologija
POVEZANOST RADA
Profili:
Ana Matin
(autor)
Ivan Brandić
(autor)
Božidar Matin
(autor)
Mislav Kontek
(autor)
Vanja Jurišić
(autor)
Karlo Špelić
(autor)
Alan Antonović
(autor)
Mateja Grubor
(autor)
Tajana Krička
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus