Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1243189

Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models


Brandić, Ivan; Antonović, Alan; Pezo, Lato; Matin, Božidar; Krička, Tajana; Jurišić, Vanja; Špelić, Karlo; Kontek, Mislav; Kukuruzović, Juraj; Grubor, Mateja; Matin, Ana
Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models // Energies, 16 (2023), 690, 10 doi:10.3390/en16020690 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1243189 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models

Autori
Brandić, Ivan ; Antonović, Alan ; Pezo, Lato ; Matin, Božidar ; Krička, Tajana ; Jurišić, Vanja ; Špelić, Karlo ; Kontek, Mislav ; Kukuruzović, Juraj ; Grubor, Mateja ; Matin, Ana

Izvornik
Energies (1996-1073) 16 (2023); 690, 10

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
agricultural biomass ; higher heating value ; machine learning ; estimation ; energy potential

Sažetak
Agricultural biomass is one of the most important renewable energy sources. As a byproduct of corn, soybean and sunflower production, large amounts of biomass are produced that can be used as an energy source through conversion. In order to assess the quality and the possibility of the use of biomass, its composition and calorific value must be determined. The use of nonlinear models allows for an easier estimation of the energy properties of biomass concerning certain input and output parameters. In this paper, RFR (Random Forest Regression) and SVM (Support Vector Machine) models were developed to determine their capabilities in estimating the HHV (higher heating value) of biomass based on input parameters of ultimate analysis. The developed models showed good performance in terms of HHV estimation, confirmed by the coefficient of determination for the RFR (R2 = 0.79) and SVM (R2 = 0.93) models. The developed models have shown promising results in accurately predicting the HHV of biomass from various sources. The use of these algorithms for biomass energy prediction has the potential for further development.

Izvorni jezik
Engleski

Znanstvena područja
Biotehnologija



POVEZANOST RADA


Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Brandić, Ivan; Antonović, Alan; Pezo, Lato; Matin, Božidar; Krička, Tajana; Jurišić, Vanja; Špelić, Karlo; Kontek, Mislav; Kukuruzović, Juraj; Grubor, Mateja; Matin, Ana
Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models // Energies, 16 (2023), 690, 10 doi:10.3390/en16020690 (međunarodna recenzija, članak, znanstveni)
Brandić, I., Antonović, A., Pezo, L., Matin, B., Krička, T., Jurišić, V., Špelić, K., Kontek, M., Kukuruzović, J., Grubor, M. & Matin, A. (2023) Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models. Energies, 16, 690, 10 doi:10.3390/en16020690.
@article{article, author = {Brandi\'{c}, Ivan and Antonovi\'{c}, Alan and Pezo, Lato and Matin, Bo\v{z}idar and Kri\v{c}ka, Tajana and Juri\v{s}i\'{c}, Vanja and \v{S}peli\'{c}, Karlo and Kontek, Mislav and Kukuruzovi\'{c}, Juraj and Grubor, Mateja and Matin, Ana}, year = {2023}, pages = {10}, DOI = {10.3390/en16020690}, chapter = {690}, keywords = {agricultural biomass, higher heating value, machine learning, estimation, energy potential}, journal = {Energies}, doi = {10.3390/en16020690}, volume = {16}, issn = {1996-1073}, title = {Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models}, keyword = {agricultural biomass, higher heating value, machine learning, estimation, energy potential}, chapternumber = {690} }
@article{article, author = {Brandi\'{c}, Ivan and Antonovi\'{c}, Alan and Pezo, Lato and Matin, Bo\v{z}idar and Kri\v{c}ka, Tajana and Juri\v{s}i\'{c}, Vanja and \v{S}peli\'{c}, Karlo and Kontek, Mislav and Kukuruzovi\'{c}, Juraj and Grubor, Mateja and Matin, Ana}, year = {2023}, pages = {10}, DOI = {10.3390/en16020690}, chapter = {690}, keywords = {agricultural biomass, higher heating value, machine learning, estimation, energy potential}, journal = {Energies}, doi = {10.3390/en16020690}, volume = {16}, issn = {1996-1073}, title = {Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models}, keyword = {agricultural biomass, higher heating value, machine learning, estimation, energy potential}, chapternumber = {690} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font