Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1238970

A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems


Matetić, Iva; Štajduhar, Ivan; Wolf, Igor; Ljubic, Sandi
A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems // Sensors, 23 (2023), 1; 1, 37 doi:10.3390/s23010001 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1238970 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems

Autori
Matetić, Iva ; Štajduhar, Ivan ; Wolf, Igor ; Ljubic, Sandi

Izvornik
Sensors (1424-8220) 23 (2023), 1; 1, 37

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
fault detection and diagnosis ; HVAC systems ; data-driven approach

Sažetak
Heating, ventilation, and air conditioning (HVAC) systems are a popular research topic because buildings’ energy is mostly used for heating and/or cooling. These systems heavily rely on sensory measurements and typically make an integral part of the smart building concept. As such, they require the implementation of fault detection and diagnosis (FDD) methodologies, which should assist users in maintaining comfort while consuming minimal energy. Despite the fact that FDD approaches are a well-researched subject, not just for improving the operation of HVAC systems but also for a wider range of systems in industrial processes, there is a lack of application in commercial buildings due to their complexity and low transferability. The aim of this review paper is to present and systematize cutting-edge FDD methodologies, encompassing approaches and special techniques that can be applied in HVAC systems, as well as to provide best-practice heuristics for researchers and solution developers in this domain. While the literature analysis targets the FDD perspective, the main focus is put on the data-driven approach, which covers commonly used models and data pre-processing techniques in the field. Data-driven techniques and FDD solutions based on them, which are most commonly used in recent HVAC research, form the backbone of our study, while alternative FDD approaches are also presented and classified to properly contextualize and round out the review.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HAMAG-BICRO-HAMAG-BICRO KK.01.2.1.02.0303 - Adria Smart Room (ASR) (Štajduhar, Ivan, HAMAG-BICRO - Povećanje razvoja novih proizvoda i usluga koji proizlaze iz aktivnosti istraživanja i razvoja – faza II) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Avatar Url Igor Wolf (autor)

Avatar Url Sandi Ljubić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Matetić, Iva; Štajduhar, Ivan; Wolf, Igor; Ljubic, Sandi
A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems // Sensors, 23 (2023), 1; 1, 37 doi:10.3390/s23010001 (međunarodna recenzija, članak, znanstveni)
Matetić, I., Štajduhar, I., Wolf, I. & Ljubic, S. (2023) A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems. Sensors, 23 (1), 1, 37 doi:10.3390/s23010001.
@article{article, author = {Mateti\'{c}, Iva and \v{S}tajduhar, Ivan and Wolf, Igor and Ljubic, Sandi}, year = {2023}, pages = {37}, DOI = {10.3390/s23010001}, chapter = {1}, keywords = {fault detection and diagnosis, HVAC systems, data-driven approach}, journal = {Sensors}, doi = {10.3390/s23010001}, volume = {23}, number = {1}, issn = {1424-8220}, title = {A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems}, keyword = {fault detection and diagnosis, HVAC systems, data-driven approach}, chapternumber = {1} }
@article{article, author = {Mateti\'{c}, Iva and \v{S}tajduhar, Ivan and Wolf, Igor and Ljubic, Sandi}, year = {2023}, pages = {37}, DOI = {10.3390/s23010001}, chapter = {1}, keywords = {fault detection and diagnosis, HVAC systems, data-driven approach}, journal = {Sensors}, doi = {10.3390/s23010001}, volume = {23}, number = {1}, issn = {1424-8220}, title = {A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems}, keyword = {fault detection and diagnosis, HVAC systems, data-driven approach}, chapternumber = {1} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font