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ABSTRACT 

The challenge of inducing stable and robust nonreciprocal transmission of sound is seen as an 

important milestone on the path towards developing active acoustic metamaterials. Structures that 

can transmit sound or vibration in a nonreciprocal manner may be considered as analogous to an 

electrical diode and could be useful in many applications, such as noise control and the development 

of invisible acoustic sensors and acoustic cloaking. This paper focuses on the conceptual 

development and experimental validation of an active metamaterial cell that does not obey the 

reciprocity principle. The structural cell considered, when activated, significantly attenuates 

vibration transmission through it in one direction and increases it in the opposite direction. The 

effect is present in a broad frequency band. The loss of reciprocity is induced by using two 

concurrent velocity feedback loops with non-collocated sensor-actuator pairs. Inertial 

accelerometers with time-integrated outputs are used in conjunction with miniature electrodynamic 

force actuators. The study is first carried out theoretically, using an electromechanically fully 

coupled lumped parameter model of an otherwise flexible active structure. The derived model is 

used to conduct analysis of the control system stability and performance. Given that a non-

collocated transducer arrangement is considered, special attention is paid to the selection of 

parameters of the passive system which ensure satisfactory gain margins when the system is made 

active. In fact, criteria for unconditional stability are derived analytically, in terms of two simple 

inequalities for the system with idealised sensor-actuator pairs. For realistic transducers, however, 

unconditional stability is not possible. Nevertheless, if the two inequalities are respected, useful 

gain margins of the active system can be expected. This is validated experimentally using a 

dedicated 3D-printed measurement test rig. A substantial reduction of vibration transmission in the 

desired direction, accompanied by an increase in the opposite one, is recorded experimentally. 

These results suggest that the control scheme proposed could be used to design an active acoustic 

metamaterial, which would enable the significantly different transmission of sound depending on 

the direction it enters such a system.  
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1 Introduction  
 

The reciprocity principle dictates that if points of excitation and response of a vibrating structure 

are switched, the measured quantity will not change. In other words, the same frequency response 

function (FRF) is obtained between the measured quantity and the excitation regardless of the switching 

[1]. Reciprocity normally holds for passive, linear time-invariant (LTI) systems. It is often a useful 

property in general modal analysis [1], when obtaining transfer functions for NVH (Noise, Vibration 

and Harshness) applications in the automotive industry [2], or for obtaining the mass density and the 

compressibility of soil from measured data in inverse seismic problems [3]. 

 However, circumvention of the reciprocity principle can be equally useful, for example when 

seeking to isolate or protect a region of space allowing wave transmission in one direction yet blocking 

it in the opposite one [4]. A great amount of recent research has been carried out in various areas of 

physics and material science with the aim of developing materials, devices or structures that do not obey 

the reciprocity principle [4–6], for example in the field of active electromagnetic metamaterials [7], 

which could be used to propagate microwaves in one direction and block them in the opposite direction. 

In the field of vibroacoustics, such concepts are interesting for prospective applications such as invisible 

acoustic sensors [8], acoustic cloaking devices [9], vibration isolation [10], autonomous and active 

guiding of sound beams [11], or full-duplex sound communication where acoustic waves can be 

transmitted and received from the same transducer on the same frequency channel [12]. A useful review 

of approaches to induce nonreciprocity in acoustic and elastic materials can be found in [13]. Such 

approaches have been mainly proposed in an effort to extend the physical limits on the available choices 

of acoustic parameters of metamaterial structures [14,15] imposed by their passivity, linearity or time-

invariance. In particular, frequency response functions of a passive, linear, and time-invariant medium 

are bounded by the Kramers-Kronig relations. These relations are a consequence of causality and 

connect the real and imaginary parts of the medium’s FRFs [16].  

On the other hand, the passivity in vibroacoustics is strongly related to the damping 

characteristics of the media involved and the corresponding energy losses. Damping causes attenuation 

of waves characterised by a relatively high wavenumber. For example, waves shorter than the 

characteristic thickness of a metastructure, or, in fact, of any structure with cellular inclusions such as 

porous media or sound absorbing foams, are significantly attenuated during propagation. The beneficial 

properties of passive resonant metamaterial structures are also often limited to certain frequency bands 

[17,18]. The width of those bands tends to scale with the scale of the inclusions within the metamaterial 

[14].  

For these reasons, there has been a growing effort to explore active acoustic metamaterials, 

which could potentially overcome the challenges described above and increase their effectiveness. 



 

Active unit cells of metamaterials with unusual acoustic properties have been considered in several 

designs [11,19,20]. The term ‘active’ is employed to point out inclusions within the metamaterial that 

are able to provide energy to the impinging wave and feedback to the acoustic system, which may be 

controlled or which are externally biased [14]. For example, nonreciprocal effects in lumped parameter 

[21] or distributed parameter [22] mechanical structures may be induced by generating tuneable 

bandgaps. The frequency of these bandgaps can be made tuneable by an active control system which 

affects the stiffness in the unit cell of the structure. In such a case, the gain of the feedback loop used to 

tune the stiffness can also be made harmonically time-varying which effectively modulates the 

resonance frequency of an inner resonant metamaterial. This results in a parametrically excited system 

that propagates waves in a non-reciprocal manner. By choosing an appropriate modulation frequency, 

complete unidirectional band gaps have been demonstrated theoretically [21]. 

 With respect to using active metamaterials to achieve unidirectional sound transmission, Fleury 

et al. [8] investigated an active metamaterial cell that is entirely transparent to tonal sound propagating 

through it from left to right and highly reflective to sound propagating in the opposite direction. In order 

to achieve this, a pair of loudspeakers was placed in a 1D acoustic waveguide (rectangular pipe) at a 

subwavelength distance. The left (absorbing) loudspeaker was shunted with a passive electrical circuit, 

whereas the right (lasing) loudspeaker was shunted with a carefully tuned non-Foster electrical circuit 

(negative impedance circuit) [23]. Therefore, the system was made active without the use of sensors or 

feedback loops, and the authors clearly demonstrated the feasibility of an acoustic sensor invisible to a 

250 Hz tone. This active metamaterial cell is based on the concept of parity-time (𝒫𝒯) symmetry [24] 

with balanced gain and loss [25]. The loss and gain balance refers to the relationship between the total 

power dissipated by either the passive energy sinks in the structure itself (such as structural damping) 

or the power possibly absorbed by the active elements of the system [26], and the power injected into 

the system by the active elements of the system. Concern has been raised about whether globally lossless 

active systems can be engineered to the standard gain and phase margins that are traditionally required 

to ensure the stability and operational robustness of active control systems in practice [27]. For 

illustration, a large amount of recent work on the feedback approach to the active control of sound and 

vibration uses elaborated control strategies such as pole/zero placement techniques [28–30] or dedicated 

compensator circuits [31] to achieve so-called hyperstability [32]. 

 A lumped parameter, active mechanical network exhibiting loss of reciprocity in terms of 

vibration transmission has been proposed in [33]. A feedback control system is used in which the control 

force is driven by a relative displacement signal amplified by a feedback gain. In the wave propagation 

direction of left-to-right, the control force depends on the error between the current cell and the previous 

cell. However in the wave propagation direction from right to left, the active control force depends on 

the error between the current cell and the next cell. In such a way, the spatial symmetry of the control 

force is broken by the asymmetric feedback signal. Simulation results assuming idealised transducers, 



 

in particular a single component (“skyhook”) control force, suggest a different displacement 

transmittance of the entire system for two opposite directions in a broad frequency band. 

 In contrast to the feedback approach described in [33], Tan et. al. [12] proposed a feedforward 

control strategy to achieve either unidirectional transmission or unidirectional absorption of sound in a 

one-dimensional waveguide. The former strategy employs a single monopole control source that is 

driven to minimise the transmitted wave, whereas the latter approach uses two monopole control sources 

that are driven to minimise both the reflected and transmitted waves and thus maximise the absorption. 

In both cases, a leaky filtered-reference least mean squares (FxLMS) adaptive algorithm [34] was used 

for the controller to converge to the optimal control source driving signals. The simulation results 

obtained suggest nearly perfect unidirectional sound transmission or absorption in the frequency band 

between 400 Hz and 1600 Hz.  

 The work reported in this paper builds on a recent notion [10] that a non-collocated sensor-

actuator arrangement can be used within a model-free feedback approach to the active vibration control 

scheme to induce nonreciprocal vibration transmission. It should be noted that normally a collocated 

transducer arrangement is used to achieve stable and robust model-free feedback control systems [35]. 

If a non-collocated transducer arrangement is used, then the stability of the closed-loop system is not 

“automatically” guaranteed. However, it has been shown theoretically in [10] that stability properties 

similar to those of collocated transducer systems can still be accomplished, with the caveat that the 

passive structure under control falls into the family of so-called supercritical systems [36]. For example, 

if a simple two degree of freedom (DOF) active vibration isolation problem is considered, then it is 

necessary to ensure that the uncoupled natural frequency of the receiving body is lower than the 

uncoupled natural frequency of the source body [36]. Then, the potentially destabilising effects due to 

the non-collocated control force component can be successfully mitigated.  

In [10], the loss of reciprocity based on a non-collocated sensor-actuator arrangement within a 

feedback control scheme was anticipated only theoretically. The potentially intricate dynamics of the 

non-ideal sensor-actuator transducers and their influence on the stability and performance properties of 

the control scheme were neglected. Moreover, a flexible active structure, characterised by an infinite 

number of vibration modes and natural frequencies, was just considered in a general demonstration that 

the reciprocity does not hold if the system is made active. Stability of the active system was only 

demonstrated for a particular (i.e. supercritical) family of 2DOF lumped parameter systems.  

 In this paper, the anticipations presented in [10] are verified theoretically and validated 

experimentally on a multiple DOF system. Considering the theoretical verification, an elaborate model 

of a 4DOF lumped parameter system equipped with two concurrent velocity feedback loops with non-

collocated sensor-actuator pairs is derived. The model takes into account the dynamics of seismic 

accelerometers and electrodynamic force actuators. The experimental validation is carried out using a 



 

3D-printed distributed parameter structure with embedded sensors and actuators. Both the theoretical 

and the experimental results show that, even though unconditional stability cannot be guaranteed, very 

large feedback gains can still be implemented. As a result, significant control effects and consequently 

a large broadband loss of reciprocity can be achieved. This implies the possibility of the practical 

implementation of the control scheme at hand in prospective active acoustic metamaterials for 

nonreciprocal sound transmission. The concept proposed has minimum stability and consequently 

minimum performance problems that normally stem from a non-collocated transducer arrangement [37]. 

Furthermore, stability and control performance problems that may arise from using a model-free MIMO 

control system without a centralised controller are circumvented by the careful design of the passive 

cell. This greatly simplifies the practical implementation by opening the way to use a model-free 

decentralised MIMO control system. 

 The paper is structured in five sections. In Section 2, the concept of the active metamaterial cell 

is introduced. In Section 3, two lumped parameter theoretical models, one neglecting and one including 

the transducer dynamics, are developed. The two models are used to carry out stability and control 

performance analyses. Section 4 is devoted to the experimental study and is followed by overall 

conclusions. 

2 The active metamaterial cell concept  
 

The concept of the active metamaterial cell is shown schematically in Figure 1. It is envisaged as 

a unit building block of a larger active sound barrier that consists of many such individual cells with an 

identical structure, as shown in Figure 2. Each cell consists of two pairs of panels 𝑃1 and 𝑃2 separated 

by a cavity 𝐶2,1, which is filled with air in a pipe of a rectangular cross-section. It is assumed that the 

lateral walls of the rectangular pipe are rigid. In cavities 𝐶1,2 between panels 𝑃1 and 𝑃2, which are also 

filled with air, there is an embedded force actuator which generates the control force by reacting off the 

panel 𝑃1. The control force is proportional to the velocity of panel 𝑃2 measured at the actuator footprint. 



 

 

Figure 1 Concept of the active acoustic metamaterial cell 

 

 

Figure 2 Concept of the active acoustic metamaterial barrier 



 

Such a system may be modelled through a physics-based reduced-order model shown in Figure 4. 

The reduced-order model is formulated by considering only the fundamental, out-of-plane vibration 

mode (1,1) of panels 𝑃1 and 𝑃2 and the fundamental breathing modes (0,0,0) of air cavities 𝐶1,2 and 𝐶2,1. 

In such a reduced-order model, each panel is represented by a mass attached to a fixed reference base 

by a spring, and each cavity is represented by a spring connecting the masses representing the panels. 

The stiffness and masses in the lumped parameter reduced-order model depend on the dimensions, 

material properties and the boundary conditions of the four flexible panels and the dimensions of the 

three rectangular air cavities. A procedure for mapping the flexible panel/cavity properties to the discrete 

reduced-order model parameters, similar to that described in [38], may be used. This type of modelling 

neglects the higher-order coupled modes of the flexible quadruple panel configuration shown in Figure 

1. Therefore, some of the global dynamic behaviour of the active system is lost for the benefit of a 

simpler and physically more transparent analysis. 

3 Theoretical analysis of the active metamaterial cell 
 

This section deals with the development and utilisation of two lumped parameter mathematical 

models of the active metamaterial cell. The first model considers the active system wherein the dynamic 

behaviour of the sensors and actuators is neglected. The second model is more elaborate, as it includes 

these initially neglected transducer dynamics. It is expected to provide a more realistic representation of 

the actual physical system considered in the experimental study given in Section 4. 

3.1 Collocated versus non-collocated active vibration control 

 When considering feedback active vibration control, the location of and information flow within 

the sensor-actuator pairs has a great impact on the response of the closed-loop system. Collocation of 

sensors and actuators is best described graphically, using a 2DOF vibration system as an example, as 

indicated in Figure 3. 



 

 

Figure 3 Different configurations of sensors and actuators in active vibration control: a) collocated sensor-

actuator pair, b) non-collocated sensor-actuator pair, c) non-collocated sensor-actuator pair, d) collocated 

sensor-actuator pair 

In Figure 3, sensors are represented by black and actuators by white squares. A sensor and an actuator 

are collocated if the actuator exerts a force 𝑓𝑐 on a degree of freedom whose kinematic variables are 

measured by the sensor (it is irrelevant whether displacement, velocity or acceleration is measured by 

the sensor). The influence of the collocation of sensors and actuators on the system's response can be 

investigated by considering the mass (if the sensors measure acceleration), damping (if the sensors 

measure velocity) or stiffness (if the sensors measure displacement) matrices of the system, provided 

that the transducers are ideal. In the present study, velocity feedback is considered (feedback gain 𝑔 has 

the same units as damping 𝑐1, 𝑐2 and 𝑐3), so Table 1 shows the structure of the damping matrices of the 

various sensor-actuator configurations shown in Figure 3.  



 

Table 1 Damping matrices including passive damping and feedback gain for various sensor-actuator 

configurations in Figure 3 

Sensor-actuator configuration Damping matrix including passive damping 

and feedback gain  

a) 
[
𝑐1 + 𝑐2 + 𝑔 −𝑐2

−𝑐2 𝑐2 + 𝑐3
] 

b) 
[
𝑐1 + 𝑐2 −𝑐2 + 𝑔
−𝑐2 𝑐2 + 𝑐3

] 

c) 
[
𝑐1 + 𝑐2 −𝑐2 − 𝑔
−𝑐2 𝑐2 + 𝑐3 + 𝑔

] 

d) 
[
𝑐1 + 𝑐2 + 𝑔 −𝑐2 − 𝑔
−𝑐2 − 𝑔 𝑐2 + 𝑐3 + 𝑔

] 

 

The reciprocal behaviour of LTI systems is tied to their transfer function matrices and, for mechanical 

networks like the ones shown in Figure 3, these depend on the mass, damping and stiffness matrices. 

In particular, a system exhibits reciprocal behaviour if its transfer function matrix is symmetric. It can 

be shown that passive linear mechanical networks will satisfy this property, since their mass, stiffness 

and damping matrices are all symmetric. On the other hand, by introducing non-collocated control 

(sensor-actuator configurations b) and c) shown in Figure 3), at least one of the system matrices 

becomes diagonally asymmetric (in the example, the damping matrix) and the symmetry of the system's 

transfer function matrix is lost. For this reason, non-collocated control is chosen as a means of achieving 

nonreciprocal behaviour in the present study.  

However, it should be mentioned that collocated control techniques are normally used to ensure good 

stability properties of the control system. In particular, the phase of the open-loop sensor-actuator FRF 

in a collocated control arrangement is confined to a 180 degree range since its amplitude is characterised 

by a resonance-antiresonance pattern in which, between each two resonances, an antiresonance can be 

found. Therefore, the control system stability using non-collocated transducer pairs requires special 

attention. Due to the fact that the two feedback loops operate concurrently (see Figure 1), they effectively 

form a decentralised Multi-Input-Multi-Output (MIMO) control system. This may cause further stability 

and performance problems due to the cross-talk between distant transducers, which could destabilise the 

whole system [37]. Therefore, as discussed in more detail in Section 3.6, a MIMO-stability analysis is 

needed. 

3.2 Lumped parameter model of a single cell neglecting the transducer dynamics 

The lumped parameter model of a single metamaterial cell is shown schematically in Figure 4. It 

consists of two identical 2DOF vibration subsystems with masses 𝑚1 and 𝑚2, stiffnesses 𝑘1, 𝑘1,2, 𝑘2 



 

and damping 𝑐 connected in series. Vibration transmission between the subsystems is facilitated by the 

coupling stiffness 𝑘2,1. The components of the active system include velocity sensors mounted to 

degrees of freedom with mass 𝑚2 and the reactive force actuators producing reactive control forces 𝑓𝑐1 

and 𝑓𝑐2. These are made proportional to the measured velocities via proportionality constant (feedback 

gain) 𝑔. It should be noted that each of the sensor-actuator pairs is in a non-collocated configuration, 

since the force actuator uses one of the degrees of freedom, namely the one with mass 𝑚1, as a base off 

which it reacts, without access to the velocity information of the corresponding degree of freedom. The 

entire control system is decentralised, since each of the individual controllers has access only to part of 

the system's state, and no information is exchanged between them. It is assumed for simplicity that the 

feedback gains of the two feedback loops are equal. 

 

Figure 4 Lumped parameter model of the metamaterial cell 

The equations of motion of the passive system are given as 

𝐌𝐪̈ + 𝐃𝐪̇ + 𝐊𝐪 = 𝐟, (1𝑎) 

 where q is the displacements vector  

𝐪(𝑡)𝐓 = [𝑞1(𝑡) 𝑞2(𝑡) 𝑞3(𝑡) 𝑞4(𝑡)], (1𝑏) 

F is the vector of the external forces acting upon the degrees of freedom (in Figure 4, for clarity, only 

forces 𝑓1 and 𝑓4 are shown) 

𝐟(𝑡)𝐓 = [𝑓1(𝑡) 𝑓2(𝑡) 𝑓3(𝑡) 𝑓4(𝑡)], (1𝑐) 

 M is the mass matrix 



 

𝐌 = [

𝑚1 0 0 0
0 𝑚2 0 0
0 0 𝑚1 0
0 0 0 𝑚2

] , (1𝑑) 

 K the stiffness matrix  

𝐊 =

[
 
 
 
𝑘1 + 𝑘1,2 −𝑘1,2 0 0

−𝑘1,2 𝑘1,2 + 𝑘2 + 𝑘2,1 −𝑘2,1 0

0 −𝑘2,1 𝑘1 + 𝑘1,2 + 𝑘2,1 −𝑘1,2
0 0 −𝑘1,2 𝑘1,2 + 𝑘2]

 
 
 

, (1𝑒) 

and D is the damping matrix 

𝐃 = [

𝑐 −𝑐 0 0
−𝑐 𝑐 0 0
0 0 𝑐 −𝑐
0 0 −𝑐 𝑐

] . (1𝑓) 

It should be noted that damping is modelled through equal viscous dampers. Their terminals are 

attached only between the first and second and between the third and fourth mass. This is because this 

damping is a consequence of the air being pushed through the annular orifice of the miniature 

electrodynamic actuator which is used in each of the two feedback loops. This damping effect was found 

to be significantly more important than the structural damping of the rest of the system, which is thus 

assumed negligible. 

For convenience of the analyses that follow, Eq. (1a) is reformulated into state space: 

𝐱̇ = 𝐀𝐱 + 𝐁𝐮, (2𝑎) 

where x is the state vector composed of the system displacements and velocities  

𝐱𝐓 = [𝐪𝐓 𝐪̇𝐓], (2𝑏) 

u is the input vector which is equal to the external forces applied to the system 

𝐮 = 𝐟, (2𝑐) 

while A and B are the state and the input matrices respectively: 

𝐀 = [
𝟎 𝐈

−𝐌−𝟏𝐊 −𝐌−𝟏𝐃
] , (2𝑑) 

𝐁 = [
𝟎
𝐌−𝟏] , (2𝑒) 

where 0 and I denote the 4×4 zero and identity matrices. Additionally, it is assumed that only the 

velocities of the system are measured, so the output equations are given as 



 

𝐲 = 𝐂𝐱, (3𝑎) 

where y is the output vector containing the velocities of the system 

𝐲 = 𝐪̇, (3𝑏) 

and C is the output matrix, which is given as  

𝐂 = [𝟎 𝐈]. (3𝑐) 

By taking the Laplace transform of Eqs. (2a) and (3a), the mapping from the input of the system 

to its output can be recovered: 

𝐘(𝑠) = 𝐆𝐩(𝑠)𝐔(𝑠), (4𝑎) 

where 𝐆𝐩(𝑠) is the transfer function matrix (mobility matrix) of the passive system given by Eq. (3b), 

𝐘(𝑠) and 𝐔(𝑠) are the Laplace transforms of the output and input vectors 𝐲(𝑡) and 𝐮(𝑡), whereas s 

denotes the Laplace variable: 

𝐆𝐩(𝑠) = 𝐂(𝑠𝐈 − 𝐀)
−𝟏𝐁. (4𝑏) 

The transfer function matrix 𝐆𝐩(𝑠) is symmetric, which indicates the reciprocal behaviour of 

the passive system. Physically, this means that the system transmits vibrations in its two characteristic 

directions (left to right and right to left – see Figure 4) equally. Active control is introduced according 

to the block diagram in Figure 5. The output Y is measured by means of the velocity sensors, which are 

denoted by the matrix 𝐆𝐬. This measured signal is then fed to the proportional controller 𝐆𝐜 to generate 

control forces 𝐅𝐜 (see Figure 4). 

It is assumed at this stage that both the sensors and the actuators are ideal. This is modelled 

through matrices 𝐆𝐬 and 𝐆𝐜, which are of the following structure: 

𝐆𝐬 = [
0 1 0 0
0 0 0 1

] , (5𝑎) 

𝐆𝐜 = [

−𝑔 0
𝑔 0
0 −𝑔
0 𝑔

] . (5𝑏) 

According to Eq. (5a), the system velocities are directly mapped to the error velocities required for 

control, 𝐘(𝑠), since matrix 𝐆𝐬 is populated with ones and zeros only. On the other hand, these error 

velocities are mapped to the control forces 𝐅𝐜 via the controller matrix 𝐆𝐜. Since its elements (the 

feedback gains 𝑔) all have the dimension Nsm-1, they may be considered to deliver a sort of "active 

damping" to masses 𝑚2 with a collocated error velocity sensor. However, the reactive component of the 



 

control force could both extract and inject energy at masses 𝑚1. In other words, it cannot be guaranteed 

that the reactive control force component strictly absorbs energy. 

 

Figure 5 Block diagram of the active metamaterial cell 

Following the rules of block algebra, one can obtain the mapping from the external inputs to the 

system, 𝐅(𝑠), to the output velocities 𝐘(𝑠): 

𝐘(𝑠) = 𝐆(𝑠)𝐅(𝑠), (6𝑎) 

where the transfer function matrix of the active system 𝐆(𝑠) is given by: 

𝐆(𝑠) =  [𝐈 + 𝐆𝐩(𝑠)𝐆𝐜𝐆𝐬]
−1
𝐆𝐩(𝑠). (6𝑏) 

By analysing the structure of Eq. (6b), it can be shown that matrix 𝐆 is not symmetric when 

control is switched on (i.e. when 𝑔 ≠ 0), and thus the system does not exhibit reciprocity. An example 

is given at the end of the following subsection. 

Since such an active system implements two decentralised velocity feedback loops, in which the 

sensors and actuators are not collocated, a detailed stability analysis is required to determine how to 

design the passive system before control is implemented so that the active system with control remains 

stable for all positive feedback gains 𝑔. 

3.3 Stability  

In order to carry out the stability analysis, the Routh-Hurwitz stability criterion is used. In order 

to apply the Routh-Hurwitz criterion, it is necessary to analyse the characteristic polynomial of a closed-

loop system. A closed-loop active system is stable if all roots of its characteristic polynomial have 

negative real parts. This stability criterion is convenient because it enables one to determine if an active 

system has a pole with a positive real part without calculating the roots of a potentially high order 

polynomial [39]. In the present study, the characteristic polynomial can be calculated as the denominator 

of any of the 16 transfer functions contained in the matrix 𝐆(𝑠) given by Eq. (6b). Each of these transfer 

functions is given by: 

𝐺𝑖,𝑗(𝑠) =
𝑁𝑖,𝑗(𝑠)

𝐷(𝑠)
, (7) 



 

where 𝑁𝑖,𝑗(𝑠) denotes the numerator and 𝐷(𝑠) the denominator of the transfer function. Both functions 

are polynomials in 𝑠. Since 𝐷(𝑠) is polynomial of order eight and as such in general its roots cannot be 

determined analytically, the Routh-Hurwitz criterion becomes especially useful.   

At this point in the analysis it is useful to introduce dimensionless parameters in order to generalise the 

stability analysis to the family of all systems that follow the layout shown in Figure 4. To this end, the 

following dimensionless parameters are introduced: 

dimensionless Laplace variable: 𝑠̃ =
𝑠

𝛺1
, (8𝑎) 

 circular frequency ratios: 

𝛼 = (
𝛺2
𝛺1
)
2

, (8𝑏) 

𝛽 = (
𝛺3
𝛺1
)
2

, (8𝑐) 

𝛾 = (
𝛺4
𝛺1
)
2

, (8𝑑) 

dimensionless damping: 𝜁 =
𝑐

2√𝑘1𝑚1

, (8𝑒) 

mass ratio: 𝜇 =
𝑚2

𝑚1
, (8𝑓) 

dimensionless feedback gain: 𝜂 =
𝑔

𝑐
, (8𝑔) 

where 𝛺1, 𝛺2, 𝛺3 and 𝛺4 represent derived circular frequencies defined by the following expressions: 

𝛺1 = √
𝑘1
𝑚1

, (8ℎ) 

𝛺2 = √
𝑘1,2
𝑚2

, (8𝑖) 

𝛺3 = √
𝑘2
𝑚2

, (8𝑗) 

𝛺4 = √
𝑘2,1
𝑚2

. (8𝑘) 

Although it was mentioned that the denominator in Eq. (7) is a polynomial of order eight, its 

structure allows for a factorisation into two polynomials of order four: 



 

𝐷(𝑠̃) = √𝑘1𝑚1𝑃1
(4)(𝑠̃)𝑃2

(4)(𝑠̃), (9) 

where polynomials 𝑃1
(4)(𝑠̃) and 𝑃2

(4)(𝑠̃) are given by the expressions that follow: 

𝑃1
(4)(𝑠̃) = 𝜇𝑠̃4 + 2𝜁(1 + 𝜂 + 𝜇)𝑠̃3 + 𝜇(1 + 𝛼 + 𝛽 + 𝜇𝛼)𝑠̃2 +

+2𝜁(1 + 𝛽𝜇 + 𝜂)𝑠̃ + 𝜇(𝜇𝛽𝛼 + 𝛽 + 𝛼), (10𝑎)
 

𝑃2
(4)(𝑠̃) = 𝜇𝑠̃4 + 2𝜁(𝜇 + 1 + 𝜂)𝑠̃3 + 𝜇(1 + 𝛼 + 𝛽 + 𝛾 + 𝜇𝛼 + 𝜇𝛾)𝑠̃2 +

+2𝜁(1 + 𝜂 + 𝜇𝛽 + 2𝜇𝛾 + 𝜇𝛾𝜂)𝑠̃ +

+𝜇2[𝛼𝛽 + 𝛾(2𝛼 + 𝛽)] + 𝜇(𝛼 + 𝛽 + 𝛾). (10𝑏)

 

This possibility for factorisation stems from the repetitive geometry of the unit cell considered, 

i.e. the 4 dof system is obtained by connecting two identical 2 dof systems in series.  

In order to ensure the negativity of the real parts of the roots of the denominator defined by Eq. 

(9), both polynomials defined by Eqs. (10a) and (10b) must simultaneously have negative real parts of 

their roots. Here, discussion of the stability of two fourth-order systems is a simpler task than the 

corresponding task for the eighth-order system.   

The necessary stability condition states that a polynomial has roots with negative real parts if all of its 

coefficients have the same sign. This may be straightforwardly shown for the polynomials defined by 

Eqs. (10a) and (10b), since all of the dimensionless parameters of the system are positive by definition. 

However, this condition is not sufficient to prove stability, which is why an analysis of the Hurwitz 

determinants of the polynomials defined by Eqs. (10a) and (10b) is conducted next (∆𝑖,𝑗 denotes the i-

th Hurwitz determinant of the j-th polynomial): 

∆1,1= 2𝜁(𝜂 + 𝜇𝛽 + 1), (11𝑎) 

∆2,1= 2𝜇𝜁{1 + 𝜂 + 𝜇[𝛼𝜂(1 − 𝛽) + 𝛽
2]}, (11𝑏) 

∆3,1= 4𝜁
2𝜇2(1 − 𝛽){𝛼𝜂2 + 1 − 𝛽 + 𝜂[1 − 𝛽 + 𝛼(1 + 𝜇)]}, (11𝑐) 

∆4,1= 4𝜁
2𝜇3(1 − 𝛽){𝛼𝜂2 + 1 − 𝛽 + 𝜂[1 − 𝛽 + 𝛼(1 + 𝜇)]}, (11𝑑) 

∆1,2= 2𝜁{1 + 𝜂 + 𝜇[𝛽 + 𝛾(2 + 𝜂)]}, (12𝑎) 

∆2,2= 2𝜇𝜁 {
1 + 𝜂 + 𝜇[𝛼𝜂(1 − 𝛽) + 𝛽2 + 𝛾2(2 + 𝜂) + 𝛾(2 + 2𝛽 + 2𝜂)] +

+𝛾2𝜇2(2 + 𝜂) + 𝜇𝛾𝛼𝜂(𝜇 − 1)
} , (12𝑏) 

∆3,2= 4𝜇
2𝜁2

{
 
 

 
 𝜂2[𝛾2 + 𝛼𝛾(𝜇 − 1) + 𝛼(1 − 𝛽)] +

+𝜂 [
𝛾2(3 + 𝜇2) + 𝛾(𝜇 − 1)(𝜇𝛼 + 2(1 − 𝛽) + 𝛼) +

+(1 − 𝛽)(1 − 𝛽 + 𝛼 + 𝜇𝛼)
] +

+𝛾2(2 + 2𝜇2) + 2𝛾(1 − 𝛽)(𝜇 − 1) + (𝛽 − 1)2 }
 
 

 
 

, (12𝑐) 



 

∆4,2= 4𝜇
3𝜁2

{
 
 

 
 𝜂2[𝛾2 + 𝛼𝛾(𝜇 − 1) + 𝛼(1 − 𝛽)] +

+𝜂 [
𝛾2(3 + 𝜇2) + 𝛾(𝜇 − 1)(𝜇𝛼 + 2(1 − 𝛽) + 𝛼) +

+(1 − 𝛽)(1 − 𝛽 + 𝛼 + 𝜇𝛼)
] +

𝛾2(2 + 2𝜇2) + 2𝛾(1 − 𝛽)(𝜇 − 1) + (𝛽 − 1)2 }
 
 

 
 

. (12𝑑) 

In order for the active system to be stable, the positivity of each of these determinants must be 

ensured for all nonnegative values of the dimensionless feedback gain 𝜂. By considering each element 

in the previous determinants where subtraction occurs, one can conclude that the active system is stable 

for all 𝜂 ≥ 0 if: 

𝛽 < 1 → √
𝑘2
𝑚2

< √
𝑘1
𝑚1

, and (13) 

𝜇 > 1 → 𝑚2 > 𝑚1. (14) 

Condition (14) is merely a requirement for masses 𝑚2 (denoted in blue in Figure 4) to be larger 

than masses 𝑚1 (denoted in red in Figure 4). On the other hand, condition (13) is analogous to the 

inequality derived in [36] for a two degree of freedom system equipped with a similar active control 

system.  

The influence of inequalities (13) and (14) on the stability properties of the system may be 

visualised by plotting the Hurwitz determinants, defined by Eqs. (11) and (12), as functions of the 

dimensionless feedback gain 𝜂. Figure 6 represents the case where conditions (13) and (14) are satisfied 

and the system is unconditionally stable, i.e. all Hurwitz determinants are positive for all 𝜂 ≥ 0. 

However, if conditions (13) and (14) are not met, then the Hurwitz determinants assume shapes as shown 

in Figure 7, where it is clear that there exists only a finite interval of the dimensionless feedback gain 𝜂 

for which the system is stable.  



 

 

Figure 6 Hurwitz determinants for the case of an unconditionally stable active system with parameters: 

𝜶 = 𝟏, 𝜷 =
𝟏

𝟐
, 𝜸 =

𝟏

𝟐
, 𝝁 = 𝟐, 𝜻 =

𝟏

𝟐𝟎
 

(∆𝟏,𝒋 – dotted black line, ∆𝟐,𝒋 – dashed green line, ∆𝟑,𝒋 – faint blue line, ∆𝟒,𝒋 – thick red line)  

 

Figure 7 Hurwitz determinants for the case of a conditionally stable active system with parameters: 

𝜶 = 𝟏, 𝜷 = 𝟏𝟎, 𝜸 =
𝟏

𝟐
, 𝝁 =

𝟏

𝟐
, 𝜻 =

𝟏

𝟐𝟎
 

(∆𝟏,𝒋 – dotted black line, ∆𝟐,𝒋 – dashed green line, ∆𝟑,𝒋 – faint blue line, ∆𝟒,𝒋 – thick red line) 

The expressions for transfer mobilities 𝐺1,4(𝑠̃) and 𝐺4,1(𝑠̃) are given as follows: 

𝐺1,4(𝑠̃) =
𝜇𝛾𝑠̃(2𝜁(𝜂 + 1)𝑠̃ + 𝜇𝛼)2

𝐷(𝑠̃)
, (15𝑎) 

𝐺4,1(𝑠̃) =
𝜇𝛾𝑠̃(2𝜁𝑠̃ + 𝜇𝛼)2

𝐷(𝑠̃)
. (15𝑏) 



 

These functions quantify the transmission of vibration from right to left, 𝐺1,4(𝑠̃), and left to 

right, 𝐺4,1(𝑠̃), see Figure 4. They are not equal when 𝜂 ≠ 0 (i.e. when the system is active), and therefore 

the activated system does not comply with the reciprocity principle. 

So far it has been shown that it is possible to determine the parameters of the passive system so 

that the active system is unconditionally stable. Therefore the next subsection deals with the 

performance of the active system, i.e. with the efficiency with which the active system induces the 

nonreciprocal effects in terms of the difference between the two transfer mobilities 𝐺1,4(𝑠̃) and 𝐺4,1(𝑠̃). 

3.4 Performance 

In order to assess the performance of the active metamaterial cell, the ℋ2 norm of transfer 

mobilities 𝐺1,4(𝑠) and 𝐺4,1(𝑠) is used. In general, the ℋ2 norm of transfer functions provides a valid 

metric for assessing performance of vibration control systems. Its square represents the variance of the 

output of the system, when the input is either white Gaussian noise or an ideal impact [40]. In addition, 

since velocity is chosen as the output variable, the square of the ℋ2 norm is also proportional to the 

kinetic energy of the corresponding mass. Thus, the norm has an additional physical interpretation. In 

general, the square of the ℋ2 norm of a single (scalar) stable transfer function 𝐺𝑘,𝑙(𝑠) is given by the 

following integral: 

‖𝐺𝑘,𝑙(j𝜔)‖ℋ2

2
=
1

2π
∫|𝐺𝑘,𝑙(j𝜔)|

2

∞

−∞

d𝜔, (16) 

where j is the imaginary unit, 𝜔 the angular frequency, and k,l=1…4. The ℋ2 norm of transfer mobilities 

𝐺1,4 and 𝐺4,1 of the active system may be calculated as functions of the feedback gain 𝑔 in order to 

observe changes in vibration transmission as 𝑔 increases. As an example, the ℋ2 norm is calculated 

with parameters of the passive mechanical system given in Table 2. These parameters have been chosen 

so that inequalities (13) and (14) are satisfied, in such a way that an arbitrarily large feedback gain 𝑔 

may be applied without the system becoming unstable.   

 

 

 

 

 

 

 

 

 



 

Table 2 Lumped parameters of the metamaterial cell 

parameter value 

𝑚1 0.005 kg 

𝑚2 0.0075 kg 

𝑘1 50000 N m−1 

𝑘2 9000 N m−1 

𝑘1,2 20000 N m−1 

𝑘2,1 15000 N m−1 

𝑐 = 𝑐1,2 0.1 N s m−1 

 

Figure 8 shows the ℋ2 norm of the characteristic transfer mobilities of the active system as a 

function of the feedback gain. In particular, the ℋ2 norms in the figure are normalised with the ℋ2 

norms when the system is passive: 

‖𝐺̃1,4‖ℋ2
=

‖𝐺1,4‖ℋ2
‖𝐺1,4(𝑔 = 0)‖ℋ2

, (17𝑎) 

‖𝐺̃4,1‖ℋ2
=

‖𝐺4,1‖ℋ2
‖𝐺4,1(𝑔 = 0)‖ℋ2

. (17𝑏) 

It is evident in Figure 8 that the active system transmits vibrations differently in the two 

directions. In particular, the ℋ2 norm of transfer mobility 𝐺4,1(𝑠) monotonically decreases when the 

feedback gain 𝑔 is increased. On the other hand, vibration transmission in the opposite direction 

decreases at first, due to the effect of damping down the resonant response, but with a further increase 

of the feedback gain 𝑔, the ℋ2 norm of 𝐺1,4(𝑠) starts to increase. In fact, for significantly large gains it 

becomes larger than in the case where the system is passive. 



 

 

Figure 8 Amplitudes of characteristic transfer mobilities with different feedback gains (a) and 𝓗𝟐 norms 

of characteristic transfer mobilities (b) 

The theoretical considerations of this subsection give strong indications that the proposed active 

system may be used in practice to achieve a nonreciprocal response. Before the development of an 

experimental prototype which will be used to validate the theoretical findings, a more elaborate model 

of the system at hand is developed in the following subsection, taking into account the initially neglected 

sensor-actuator dynamics.  

3.5 Lumped parameter model including sensor-actuator dynamics 

The transducer dynamics are incorporated into the model, thereby fully coupling the mechanical 

and electrical subsystems. This in turn allows for a more faithful representation of the actual physical 

system. The scheme of this augmented model is given in Figure 9. The electrodynamic actuators are 

modelled as first-order electrical systems with resistance 𝑅, inductance 𝐿, and a back electromotive force 

constant 𝑇, which is equal in value (but different in units) to the force proportionality constant which 

relates the electrical current flowing through the circuit to the produced force. Since vibration 

transmission is monitored only from the leftmost degree of freedom to the rightmost and vice versa, 

only two driving actuators are used in the model, producing excitation forces 𝑓1 and 𝑓4 as a result of 

applied voltages 𝑒1 and 𝑒4.  



 

 

Figure 9 Model of the active metamaterial cell including sensor-actuator dynamics 

Assuming that all actuators are identical, their dynamic behaviour may be written in matrix 

form: 

d𝐢

d𝑡
= −

𝑅

𝐿
𝐢 +

𝑇

𝐿
𝐍𝐓𝐪̇ +

1

𝐿
𝐞, (18𝑎) 

where i is the vector containing the electrical currents passing through the actuator circuits: 

𝐢𝐓 = [𝑖1 𝑖2 𝑖3 𝑖4], (18𝑏) 

e is the actuator voltage vector: 

𝐞𝐓 = [𝑒1 𝑒2 𝑒3 𝑒4], (18𝑐) 

and matrix N is populated as follows: 

𝐍 = [

−1 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 1

] . (18𝑑) 

As mentioned earlier, the forces which act upon the mechanical subsystem are proportional to 

the currents flowing through the electrical circuits: 

𝐟𝐓 = [𝑓1 𝑓𝑐1 𝑓𝑐2 𝑓4] = 𝑇𝐢
𝐓, (18𝑒) 



 

so that the equations of motion of the mechanical subsystem may be written as the following equation: 

𝐌𝐪̈ + 𝐃𝐪̇ + 𝐊𝐪 + 𝑇𝐍𝐢 = 𝟎, (19𝑎) 

with matrices M and K being identical to the ones defined by Eqs. (1d) and (1e), but the damping matrix 

D is given by: 

𝐃 = [

2𝑐 −𝑐 0 0
−𝑐 𝑐 0 0
0 0 𝑐 −𝑐
0 0 −𝑐 2𝑐

] . (19𝑏) 

The structure of the damping matrix is different from Eq. (1f) since the excitation forces 𝑓1 and 

𝑓4 are applied via electrodynamic actuators, which add passive air-gap damping as mentioned earlier in 

subsection 3.2. 

Equations (18a) and (19a) may be written as a system of first-order ordinary differential 

equations. This yields a state space representation of the system: 

𝐱̇̂ = 𝐀̂𝐱̂ + 𝐁̂𝐮̂, (20𝑎) 

𝐲̂ = 𝐂̂𝐱̂, (20𝑏) 

where 𝐱̂ is the augmented state vector including both the mechanical states (displacements and 

velocities) as well as the electrical states (currents) of the corresponding subsystems: 

𝐱̂𝐓 = [𝐪𝐓 𝐪̇𝐓 𝐢𝐓], (20𝑐) 

𝐮̂ is the input vector containing the voltages imposed at the electrodynamic actuators’ electrical 

terminals: 

𝐮̂ = 𝐞, (20𝑑) 

while the outputs of the system remain the velocities of the four degrees of freedom, as in subsection 

3.2: 

𝐲̂ = 𝐪̇. (20𝑒) 

The augmented system matrix is given as follows: 

𝐀̂ = [

𝟎 𝐈 𝟎
−𝐌−𝟏𝐊 −𝐌−𝟏𝐃 −𝑇𝐌−𝟏𝐍

𝟎
𝑇

𝐿
𝐍𝐓 −

𝑅

𝐿
𝐈
] , (20𝑓) 

where I and 0 are again 4×4 identity and null-matrices. By representing the system in such an augmented 

state space, the coupling between the mechanical and electrical subsystems can be clearly identified. In 

particular, the first 2×2 block of matrices in Eq. (20f) is identical to the matrix defined by Eq. (2d) and 



 

shows how the mechanical states (displacements and velocities) influence one another. On the other 

hand, elements −𝑇𝐌−𝟏𝐍 and 
𝑇

𝐿
𝐍𝐓 are related to how the electrical subsystem influences the mechanical 

one and vice versa.  

The augmented input matrix 𝐁̂ is defined as: 

𝐁̂ = [

𝟎
𝟎
1

𝐿
𝐈
] , (20𝑔) 

where I and 0 are again 4×4 identity and zero matrices. 

Finally, the augmented output matrix 𝐂̂ is given as follows: 

𝐂̂ = [𝟎 𝐈 𝟎], (20ℎ) 

where 0 and I are zero and identity matrices with dimensions 4×4.  

The transfer function matrix of the passive system augmented with actuator dynamics is defined as: 

𝐆𝐩(𝑠) = 𝐂̂(𝑠𝐈 − 𝐀̂)
−𝟏
𝐁̂, (21) 

and represents the mapping of voltages at the electrical terminals of the electrodynamic actuators to the 

velocities of the mechanical degrees of freedom. 

The application of the active control to the system is done according to the block diagram in 

Figure 10. This diagram is quite similar to the one in subsection 3.2. However, the matrices which 

represent the system elements are populated differently. The sensor matrix 𝐆𝐬(s) is defined by: 

𝐆𝐬(𝑠) = diag[𝐺𝑚(𝑠), 𝐺𝑚(𝑠), 𝐺𝑚(𝑠), 𝐺𝑚(𝑠)], (22𝑎) 

𝐺𝑚(𝑠) =
𝜔𝑚
2

𝜔𝑚
2 + 2𝜁𝑚𝜔𝑚𝑠 + 𝑠

2
, (22𝑏) 

and its elements are second-order transfer functions defined by Eq. (22b). Second-order dynamics are 

used for sensor modelling since inertial accelerometers used to measure vibration responses normally 

contain seismic masses and act as 1DOF vibration systems themselves, having a relatively high natural 

frequency 𝜔𝑚 and a relatively low damping ratio 𝜁𝑚. It is assumed in Eq. (22b) that the gain of the 

second-order system is absorbed in the feedback gain 𝑔. Additionally, it is assumed that all sensors are 

identical. 



 

 

Figure 10 Block diagram of the active metamaterial cell augmented with sensor-actuator dynamics 

The controller is given by the transfer function matrix 𝐆𝐜, which represents the mapping from 

the measured velocities of the system 𝐘𝐬(𝑠) to the control voltages 𝐔̂𝐜(𝑠). Note that the units of feedback 

gains 𝑔 are now Vsm-1 (since voltage is the control variable), as opposed to the case from previous 

subsections, where idealised actuators were assumed and the feedback gain 𝑔 had units Nsm-1: 

𝐆𝐜 = [

0 0 0 0
0 𝑔 0 0
0 0 0 𝑔
0 0 0 0

] . (22𝑐) 

The zero-rows in matrix 𝐆𝐜 are required to keep the dimensions of the control voltages 

consistent with the dimensions of the input vector, even though only voltages 𝑒2 and 𝑒3 are used for 

control. For the same reasons, matrix 𝐆𝐟 is required and serves only to expand the vector of excitation 

voltages 𝐄𝐟(𝑠) and recover the external excitation vector 𝐔𝐟(𝑠): 

𝐄𝐟
𝐓(𝑠) = [𝐸1(𝑠) 𝐸4(𝑠)], (22𝑑) 

𝐆𝐟 = [

1 0
0 0
0 0
0 1

] , (22𝑒) 

where 𝐸1(𝑠) and 𝐸4(𝑠) represent the Laplace transforms of voltages 𝑒1(𝑡) and 𝑒4(𝑡). 

The mapping from the excitation voltages 𝐄𝐟(𝑠) to the measured velocities 𝐘𝐬(𝑠) is given by: 

𝐘𝐬(𝑠) = 𝐆(𝑠)𝐄𝐟(𝑠), (23𝑎) 

𝐆(𝑠) =  [𝐈 + 𝐆𝐬(𝑠)𝐆̂𝐩(𝑠)𝐆̂𝐜]
−1
𝐆̂𝐬(𝑠)𝐆̂𝐩(𝑠)𝐆𝐟. (23𝑏) 

The characteristic transfer functions analogous to the transfer mobilities 𝐺1,4 and 𝐺4,1 of the model 

neglected transducer dynamics become elements 𝐺1,2 and 𝐺4,1 of matrix 𝐆(𝑠). They represent the 

mapping of voltage 𝑒4 to the measured velocity of the first degree of freedom and the mapping of voltage 

𝑒1 to the measured velocity of the fourth degree of freedom. Because of this, even though it does not 



 

represent a mapping from forces to velocities (but rather voltages to velocities), matrix 𝐆(𝑠) may be 

considered analogous to the mobility matrix of the active system 𝐆(𝑠) when the dynamics of the sensors 

and actuators is not neglected. Due to the additional dynamics of the actuators, the passive system 

described by 𝐆𝐩(𝑠) is of order twelve. By switching on the active control, this matrix is multiplied by 

second-order sensor transfer functions 𝐆𝐬(𝑠) so that the order of the closed loop system is further 

increased. Thus, the stability analysis using the Routh-Hurwitz criterion becomes rather impractical. 

Another method of analysing the stability properties of a closed loop system having multiple inputs and 

outputs (MIMO) is the generalised Nyquist criterion. 

3.6 MIMO stability analysis 

The generalised Nyquist stability criterion may be used to assess the stability of a feedback system 

with multiple inputs and outputs by analysing the properties of the sensor-actuator open loop FRF. This 

matrix needs to be inverted, as shown in Eq. (23b), and as such needs to be regular in order for the 

system to remain stable. The generalised Nyquist stability criterion states that the closed loop feedback 

system is stable if the locus of the following determinant does not encircle the origin of the complex 

plane as frequency 𝜔 varies from −∞ to ∞ [41]: 

det[𝐈 + 𝐆𝐬𝐚(j𝜔)] = [1 + 𝜆̂1(j𝜔)][1 + 𝜆̂2(j𝜔)][1 + 𝜆̂3(j𝜔)][1 + 𝜆̂4(j𝜔)], (24) 

𝐆𝐬𝐚(𝑠) = 𝐆𝐬(𝑠)𝐆̂𝐩(𝑠)𝐆̂𝐜. (25) 

 In Eq. (24), the fact that the determinant of a matrix is equal to the product of all of its 

eigenvalues is used. As such, 𝜆̂𝑖(j𝜔) represents the i-th eigenvalue of 𝐆𝐬𝐚(j𝜔), i=1...4 [42]. In general, 

matrix 𝐆𝐬𝐚 has as many eigenvalues as there are feedback loops and thus in the present case the matrix 

should have two eigenvalues. However, because of the "artificial" expansion of matrix 𝐆𝐜 with zero 

rows (see Eq. (22c)), two of the eigenvalues are constant and equal zero. Only the two non-zero 

eigenvalues are relevant in the forthcoming stability analysis. Then the standard single-input-single-

output Nyquist criterion can be applied to each of the two eigenvalues. In other words, the active 

metamaterial cell will be stable if neither of the loci of 𝜆̂1(j𝜔) and 𝜆̂2(j𝜔) encircles the Nyquist point –

1+0j.  

Such a stability analysis is conducted on a system given as an example with parameters shown 

in Table 3. These parameters have been determined from the experimental setup, which is presented in 

more detail in Section 4.  

 

 

 

 



 

Table 3 Parameters of the active metamaterial cell with included transducer dynamics 

parameter value 

𝑚1 0.045 kg 

𝑚2 0.06075 kg 

𝑘1 55400 N m−1 

𝑘2 9100 N m−1 

𝑘1,2 18150 N m−1 

𝑘2,1 17850 N m−1 

𝑐 0.8 N s m−1 

𝑇 0.45 N A−1, V s m−1 

𝐿 63×10-6 H 

𝑅 1.5 Ω 

𝜔𝑚 2π×42×103 rad s−1 

𝜁𝑚 0.00158 (dimensionless) 

𝑔 300 V s m−1 

 

Figure 11 shows the Nyquist contours of both eigenvalues of the sensor-actuator open loop FRF 

matrix. The thick red line represents the case where the dynamic behaviour of the sensors and actuators 

is taken into account, whereas the dashed blue line represents the analogous locus when these dynamics 

are neglected. 



 

 

Figure 11 Nyquist contours of the eigenvalues 𝝀𝟏 (a) and 𝝀𝟐 (b) of the sensor-actuator open loop frequency 

response function matrix: model with included sensor-actuator dynamics – solid red line, model with 

idealised sensors and actuators – dashed blue line (black circles indicate the eigenfrequencies of the system, 

the black diamond indicates the cut-off frequency of the electrodynamic actuators, the black square 

indicates the point at which the contour crosses the negative real axis, the black "×" indicates the 

eigenfrequency of the sensors) 

By considering Figure 11, it can be noticed that the thick red line crosses the negative real axis 

even though the parameters of the passive system have been chosen so that inequalities (13) and (14) 

are satisfied (see the zoomed frame in Figure 11). This is in contrast to the case where sensor-actuator 

dynamics are not taken into account, which demonstrates that in practice, when using realistic 

transducers, it is not possible to guarantee the unconditional stability but only a certain stability margin. 

In particular, one can consider the gain margin, which is defined as the distance between the point at 

which the contour intersects the negative real axis (marked with a black square in Figure 11) and the 

Nyquist point -1+0j. The value of the chosen feedback gain 𝑔 (see Table 3) ensures quite a large gain 

margin of about 36 dB. This can be seen by considering the Bode plots of the two eigenvalues, shown 

in Figure 12 and Figure 13. The mathematical model including sensor-actuator dynamics is denoted by 

a thick red line, while the case in which idealised transducers are assumed is represented by a dashed 

blue line. 
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Figure 12 Amplitude (a) and phase (b) plot of the first eigenvalue (𝝀𝟏) of the sensor-actuator open loop 

frequency response function matrix: model with included sensor-actuator dynamics – solid red line, model 

with idealised sensors and actuators – dashed blue line (black circles indicate the eigenfrequencies of the 

system, the black diamond indicates the cut-off frequency of the electrodynamic actuators, the black square 

indicates the point at which the contour crosses the negative real axis, the black "×" indicates the 

eigenfrequency of the sensors) 

 

Figure 13 Amplitude (a) and phase (b) plot of the second eigenvalue (𝝀𝟐) of the sensor-actuator open loop 

frequency response function matrix: model with included sensor-actuator dynamics – solid red line, model 

with idealised sensors and actuators – dashed blue line (black circles indicate the eigenfrequencies of the 

system, the black diamond indicates the cut-off frequency of the electrodynamic actuators, the black square 

indicates the point at which the contour crosses the negative real axis, the black "×" indicates the 

eigenfrequency of the sensors) 

Both models yield similar responses up to frequencies of about 1 kHz. The electrodynamic actuators 

tend to add some passive damping to the system, since electrical current is induced in the electrodynamic 
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actuators by means of the relative motion of the coil and magnet, and the resistance in the circuit 

dissipates energy (it behaves like a mechanical damper). Another point of interest is marked with a black 

diamond and represents the cut-off frequency of the electrical subsystem (the ratio of its resistance and 

inductance) which is characterised by a drop in gain of 3 dB and phase lag of 45° with respect to the 

case when the actuator dynamics is not taken into account. Additionally, the model including transducer 

dynamics has an additional resonance frequency (marked with a black "×" in the figure), which is the 

blocked mechanical resonance of the seismic accelerometer. It is at a frequency just below this resonance 

that the phase of the model including transducer dynamics crosses -180°. This can be seen in the Nyquist 

plot as the crossing of the contour over the negative real axis (indicated by a black square in the figures). 

At this frequency, the amplitude of both eigenvalues is about -36 dB, which is why 36 dB is considered 

the gain margin in this case. Given that in practice 6 dB of gain margin is normally sufficient, this model 

predicts that a larger feedback gain may be implemented. In conclusion, the analysis carried out in this 

subsection shows that with realistic transducers it is not possible to ensure an unconditional stability 

system. Nevertheless, the model still predicts quite a large gain margin which may be achieved if the 

passive system is designed to satisfy inequalities (13) and (14). The next section deals with the 

experimental validation of the theoretical findings. 

4 Experimental study  

4.1 The experimental setup 

The design of the experimental setup is shown in Figure 14 a). Note that the setup mimics the 

lumped parameter model in that the masses are produced by concentrating fairly rigid lumps of material 

whereas the stiffnesses are produced by lightweight flexible straight or curved beam elements. 



 

 

Figure 14 Active metamaterial experimental setup concept (a) and 3D printed prototype (b) 

Masses 𝑚1 and 𝑚2 are mimicked by blocks connected via leaf springs (stiffnesses 𝑘1 and 𝑘2) 

to a massive frame which is mounted on a rigid foundation. These blocks of material are connected to 

each other by leaf springs (stiffnesses 𝑘1,2 and 𝑘2,1). The colour coding of the elements in Figure 14 a) 

is identical to the one in Figure 4 and Figure 9 for easier comparison. A significantly greater mass and 

stiffness of the blocks in comparison to the masses and stiffnesses of the leaf springs ensure that the first 

four natural frequencies, as well as their corresponding vibration modes, for the most part agree with 

ones that would be calculated assuming that the springs do not possess inertia and that the blocks were 

rigid. However, since the parameters of this system are distributed, additional natural modes appear 
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which cannot be taken into account using the lumped parameter model at frequencies higher than its 

fourth dominant natural frequency.  

The experimental setup is designed while having inequalities (13) and (14) in mind in order to 

ensure the good stability properties of a closed loop system. This is done by adding extra material to 

blocks 𝑚2 (see Figure 14) to ensure that condition (14) is satisfied. The springs 𝑘1 are also made thicker 

(and thus stiffer) in comparison to springs 𝑘2 in order to satisfy inequality (13). A convenient technology 

for the fabrication of such an experimental setup is 3D printing, as it enables a fast transition from a 

computer generated model to a physical prototype using a CAD/CAM approach. In particular, a fused 

deposition modelling printer was used to print the system and PETG (Polyethylene Terephthalate Glycol 

modified) filament was used as the material. After the printing was complete, the mechanical part of the 

prototype was equipped with sensors and actuators. This is done according to Figure 14, where the 

accelerometers are denoted in yellow and are embedded within the rectangular slots into the blocks 

which represent the four principal moving masses of the system. The electrodynamic actuators used to 

develop the control forces are denoted in black, and the primary excitation actuators are denoted in 

magenta. The actuators’ properties can be found in Table 3. Likewise, the properties of the seismic 

accelerometers may be found in the same table. 

4.2 Measuring equipment and measuring procedures 

Figure 15 shows the experimental setup complete with the measuring equipment required for the 

measurement of the system's response. These include a 4-channel charge amplifier, dynamic signal 

analyser, power amplifier and a computer. The input to the charge amplifier is the accelerometer signals, 

which it then amplifies and integrates. In order to implement the proportional controllers, a power 

amplifier is required to drive the control actuators, which enables the feedback gain to be raised or 

lowered. This amplifier is also required to adjust the voltage amplitude at the primary actuators used for 

the excitation of the system. Furthermore, the dynamic signal analyser is used to process all of the signals 

of interest (the measured velocities and voltages at the terminals of the primary and control actuators) 

and to generate the white noise excitation signals which were used throughout the study to measure the 

various FRFs. This type of excitation is chosen to efficiently average out minor nonlinearities in the 

response of the polymer 3D-printed structure. This method, however, results in a relatively lower signal-

to-noise ratio [1]. Nevertheless, the influence of ambient vibration may be mitigated by using an input 

signal of greater amplitude. In the present case, a white noise signal with root mean square 0.1 V was 

found to be sufficiently low to provide a satisfactory signal-to-noise ratio without inducing a non-linear 

structural response. In order to reduce the systematic errors arising from the intrinsic cable EMC noise, 

coaxial transmission lines in conjunction with robust shielded connectors were used. 



 

 

Figure 15 Experimental setup of the active metamaterial cell prototype complete with measuring 

equipment 

4.3 Experimental stability analysis 

Stability is again assessed using the generalised Nyquist criterion. To this end, the sensor-actuator 

frequency response function matrix must first be assembled. To begin, the responses of the system are 

measured when it is excited only by the first control actuator (voltage 𝑒2), as shown in Figure 16. All 

the labelling of signals in Figure 16 is the same as in Figure 9 in order to facilitate the comparison of the 

mathematical model and the experimental setup. 

 

Figure 16 Measurement of the sensor-actuator frequency response functions when the system is excited 

with the first feedback actuator 

The red arrow represents the white noise excitation signal, while the green arrows represent the 

output signal from the accelerometer. The input voltage to the actuator and velocity signals 𝑞̇2 and 𝑞̇4 
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are processed in the dynamic signal analyser and are fed to the computer where these data are post 

processed and saved. The post processing software enables the formation of part of the matrix 𝐆𝐬𝐚(j𝜔), 

Eq. (25), with the experimentally obtained data. The same measurement process is repeated with the 

input voltage at the second feedback actuator 𝑒3, after which the entire matrix 𝐆𝐬𝐚(j𝜔) is populated and 

one may solve for its eigenvalues at each frequency. Measurements were made up to 24 kHz which is 

the dynamic signal analyser upper frequency limit. Nyquist contours of the calculated eigenvalues of 

the sensor-actuator frequency response function matrix are shown in Figure 17. 

 

Figure 17 Nyquist contours of the eigenvalues 𝝀𝟏 (a) and 𝝀𝟐 (b) of the experimentally obtained sensor-

actuator frequency response matrix (the black square indicates the crossing of the contour over the negative 

real axis) 

Note that the contours intersect the negative real axis at values that are much closer to the Nyquist point, 

-1+0j, when compared to the case predicted by the mathematical model in the previous section. This 

indicates a lower stability margin than theoretically anticipated. The stability properties of the system 

may be better visualised by considering the amplitude and phase plots of the same eigenvalues as shown 

in Figure 18 and Figure 19 and comparing them to the theoretically predicted ones. 
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Figure 18 Amplitude (a) and phase (b) plots of the first eigenvalue of the sensor-actuator frequency response 

function matrix: mathematical model with included sensor-actuator dynamics – dashed blue line, 

experimental results – solid red line (the black square indicates the frequency at which the Nyquist contour 

crosses the negative real axis) 

 

Figure 19 Amplitude (a) and phase (b) plots of the second eigenvalue of the sensor-actuator frequency 

response function matrix: mathematical model with included sensor-actuator dynamics – dashed blue line, 

experimental results – solid red line (the black square indicates the frequency at which the Nyquist contour 

crosses the negative real axis) 

It can be noticed that the eigenvalues calculated according to the mathematical model and the 

experimentally obtained ones agree well at low frequencies. However, at frequencies higher than 2 kHz, 

deviations between the theoretical and experimental eigenvalues occur. This may be explained by the 

fact that the experimental prototype is a system with distributed parameters which possesses an infinite 

number of natural frequencies and vibration modes. For this reason, the phase lag of 180° occurs at 
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much lower frequencies than theoretically predicted and at amplitudes much higher than predicted. In 

particular, the theoretical model predicts a gain margin of about 36 dB (Figure 12 and Figure 13), while 

the measured gain margin amounts to about 7 dB (Figure 18). Even though the measured stability margin 

is much lower than predicted, it is still sufficient, since in practice margins of about 6 dB are often 

considered satisfactory. This behaviour is caused by a phenomenon known as control spillover. It is 

present in the vibration control of continuous structures where a finite dimensional controller interacts 

with residual modes not taken into account during synthesis, but which are present in the physical 

system. More on this phenomenon and various methods of its compensation may be found in [43] and 

[44]. 

The next subsection deals with measurements of the characteristic transfer functions in order to 

determine how the system transmits vibrations in two of its characteristic directions. 

4.4 Performance 

Given that the analysis from the previous subsection determines that the active metamaterial cell 

can be made stable with a gain margin of 7 dB, in this section the results of measurements of the two 

characteristic FRFs, 𝐺4,1 and 𝐺1,2, are presented in order to show how the cell transmits vibrations from 

its leftmost degree of freedom to the rightmost and vice versa.1 Measurements are conducted when a) 

the feedback loops are open and thus the system is passive, and b) when the feedback loops are closed, 

making the system active, operating with the 7 dB gain margin. Figure 20 shows passive and active 

FRFs and also shows a comparison between the experimental results with those obtained using the 

mathematical model including transducer dynamics. Considering the response when the system is 

passive, it can be concluded that the mathematical model predicts perfectly reciprocal behaviour, since 

there is only one solid black line (in that case, 𝐺1,2 and 𝐺4,1 are equal). The measurement results show 

almost identical behaviour, since the dotted green and dash-dotted magenta line almost coincide. This 

indicates that the passive experimental system exhibits reciprocal behaviour as well, with only minor 

differences. These differences are due to the differences in the transducers used and minor nonlinearities. 

When the active control is switched on, these two characteristic transfer functions become rather 

different, indicating a very large loss of reciprocity. In particular, in the resonance controlled frequency 

range, the differences between the amplitudes of the characteristic transfer functions case, 𝐺1,2 and 𝐺̂4,1, 

reach about 20 dB, whereas this difference in the mass controlled range becomes even larger and reaches 

30 dB. Very good agreement is found between the mathematical model and the experimentally obtained 

results, where the major differences occur only at higher frequencies where the amplitudes are small and 

the signals approach the noise floor of the measurement chain. 

                                                 
1 Since the system has two exogenous inputs and four measured outputs, the transfer function matrix 𝐆 is a 4×2 

matrix, which is why 𝐺̂4,1 and 𝐺̂1,2 are the characteristic transfer functions that should be compared (i.e. not 𝐺̂4,1 

and 𝐺̂1,4). 



 

 

Figure 20 Comparison between the characteristic transfer functions of the active metamaterial: 𝑮̂𝟏,𝟐 

(experimental, passive) – green dotted line, 𝑮̂𝟒,𝟏 (experimental, passive) – magenta dash dotted line, 𝑮̂𝟏,𝟐 =

𝑮̂𝟒,𝟏 (theoretical, passive) – black solid line, 𝑮̂𝟏,𝟐 (experimental, active) – solid blue line, 𝑮̂𝟒,𝟏 (experimental, 

active) – thick red line, 𝑮̂𝟏,𝟐 (theoretical, active) – faint dashed blue line, 𝑮̂𝟒,𝟏 (theoretical, active) – faint 

dashed red line 

It can also be noted that the transmission of vibrations when the system is active in the direction left to 

right according to Figure 14 will be lower at all frequencies when compared to the transmission in the 

same direction when the system is passive. On the other hand, increased vibration transmission at 

frequencies higher than 130 Hz is actually facilitated in the opposite direction when the system is made 

active, so that at these frequencies vibration transmission is amplified when compared to the passive 

case. In order to better visualise the loss of reciprocity, the experimentally obtained time domain 

response of the metamaterial cell with white noise input is also given in Figure 21 and Figure 22. 

Comparing the responses of the metamaterial cell in its opaque and transparent directions, the 

nonreciprocal response becomes apparent. 



 

 

Figure 21 Time domain response of the active metamaterial cell in the opaque direction 

 

Figure 22 Time domain response of the active metamaterial cell in the transparent direction 

It would be interesting to consider a proportional-integral (PI) controller to induce a larger reciprocity 

loss at low frequencies. This is because the responses of mechanical structures below fundamental 

resonance are stiffness controlled. Then an amount of absolute displacement feedback in addition to the 

absolute velocity feedback may contribute to disrupting the reciprocity also in the stiffness-controlled 

low frequency range. 

 

 



 

5 Conclusions 
 

An active metamaterial concept is introduced, which utilises two non-collocated decentralised 

velocity feedback loops to achieve a nonreciprocal response of the structure under control. Theoretical 

analysis of the system neglecting transducer dynamics led to criteria which the passive system should 

satisfy in order to achieve unconditional stability in a closed loop in terms of two simple inequalities. 

Augmenting the mathematical model with the sensor-actuator dynamics reveals that these dynamics 

infringe on the stability properties of the system in a closed loop. Thus, when working with real 

transducers, it is not possible to guarantee unconditional stability, but rather only ensure a satisfactory 

stability margin. Theoretical predictions are validated by measurements carried out using an 

experimental prototype. A significant difference in vibration transmission in the two opposing directions 

is measured. This difference increases with frequency and is of the order 20-30 dB, which shows that a 

significant loss of reciprocity may be achieved by using the proposed control scheme. Good agreement 

between the theoretical and the experimental results is found at frequencies below approximately 340 

Hz. Some differences are however found at higher frequencies. These can be explained by the influence 

of residual higher-order modes which are neglected in the theoretical model. Potential improvement to 

the stability properties of the system may be the synthesis of a spillover compensator. The overall results 

indicate that multiple feedback loops in a non-collocated configuration may be used in the design of 

active acoustic metamaterials: devices to enable the significantly different transmission of sound 

depending on the direction it enters such a system.  
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