Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1230788

3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera


Šajina, Romeo; Ivašić-Kos, Marina
3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera // Journal of Imaging, 8 (2022), 11; 308, 34 doi:10.3390/jimaging8110308 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1230788 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera

Autori
Šajina, Romeo ; Ivašić-Kos, Marina

Izvornik
Journal of Imaging (2313-433X) 8 (2022), 11; 308, 34

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
pose estimation ; pose retargeting ; sequence smoothing ; tracking ; deep learning models

Sažetak
Player pose estimation is particularly important for sports because it provides more accurate monitoring of athlete movements and performance, recognition of player actions, analysis of techniques, and evaluation of action execution accuracy. All of these tasks are extremely demanding and challenging in sports that involve rapid movements of athletes with inconsistent speed and position changes, at varying distances from the camera with frequent occlusions, especially in team sports when there are more players on the field. A prerequisite for recognizing the player’s actions on the video footage and comparing their poses during the execution of an action is the detection of the player’s pose in each element of an action or technique. First, a 2D pose of the player is determined in each video frame, and converted into a 3D pose, then using the tracking method all the player poses are grouped into a sequence to construct a series of elements of a particular action. Considering that action recognition and comparison depend significantly on the accuracy of the methods used to estimate and track player pose in real-world conditions, the paper provides an overview and analysis of the methods that can be used for player pose estimation and tracking using a monocular camera, along with evaluation metrics on the example of handball scenarios. We have evaluated the applicability and robustness of 12 selected 2- stage deep learning methods for 3D pose estimation on a public and a custom dataset of handball jump shots for which they have not been trained and where never-before-seen poses may occur. Furthermore, this paper proposes methods for retargeting and smoothing the 3D sequence of poses that have experimentally shown a performance improvement for all tested models. Additionally, we evaluated the applicability and robustness of five state-of-the-art tracking methods on a public and a custom dataset of a handball training recorded with a monocular camera. The paper ends with a discussion apostrophizing the shortcomings of the pose estimation and tracking methods, reflected in the problems of locating key skeletal points and generating poses that do not follow possible human structures, which consequently reduces the overall accuracy of action recognition.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Sveučilište Jurja Dobrile u Puli,
Fakultet informatike i digitalnih tehnologija, Rijeka

Profili:

Avatar Url Romeo Šajina (autor)

Avatar Url Marina Ivašić Kos (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Šajina, Romeo; Ivašić-Kos, Marina
3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera // Journal of Imaging, 8 (2022), 11; 308, 34 doi:10.3390/jimaging8110308 (međunarodna recenzija, članak, znanstveni)
Šajina, R. & Ivašić-Kos, M. (2022) 3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera. Journal of Imaging, 8 (11), 308, 34 doi:10.3390/jimaging8110308.
@article{article, author = {\v{S}ajina, Romeo and Iva\v{s}i\'{c}-Kos, Marina}, year = {2022}, pages = {34}, DOI = {10.3390/jimaging8110308}, chapter = {308}, keywords = {pose estimation, pose retargeting, sequence smoothing, tracking, deep learning models}, journal = {Journal of Imaging}, doi = {10.3390/jimaging8110308}, volume = {8}, number = {11}, issn = {2313-433X}, title = {3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera}, keyword = {pose estimation, pose retargeting, sequence smoothing, tracking, deep learning models}, chapternumber = {308} }
@article{article, author = {\v{S}ajina, Romeo and Iva\v{s}i\'{c}-Kos, Marina}, year = {2022}, pages = {34}, DOI = {10.3390/jimaging8110308}, chapter = {308}, keywords = {pose estimation, pose retargeting, sequence smoothing, tracking, deep learning models}, journal = {Journal of Imaging}, doi = {10.3390/jimaging8110308}, volume = {8}, number = {11}, issn = {2313-433X}, title = {3D Pose Estimation and Tracking in Handball Actions Using a Monocular Camera}, keyword = {pose estimation, pose retargeting, sequence smoothing, tracking, deep learning models}, chapternumber = {308} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • PubMed


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font