Pregled bibliografske jedinice broj: 1228936
Automated Detection and Classification of Returnable Packaging Based on YOLOV4 Algorithm
Automated Detection and Classification of Returnable Packaging Based on YOLOV4 Algorithm // Applied sciences (Basel), 12 (2022), 21; 11131, 34 doi:10.3390/app122111131 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1228936 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automated Detection and Classification of
Returnable Packaging Based on YOLOV4 Algorithm
Autori
Glučina, Matko ; Baressi Šegota, Sandi ; Anđelić, Nikola ; Car, Zlatan
Izvornik
Applied sciences (Basel) (2076-3417) 12
(2022), 21;
11131, 34
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
artificial intelligence algorithms ; automated system ; convolutional neural network ; computer vision ; YOLOV4
Sažetak
This article describes the implementation of the You Only Look Once (YOLO) detection algorithm for the detection of returnable packaging. The method of creating an original dataset and creating an augmented dataset is shown. The model was valuated using mean Average Precision (mAP), F1score, Precision, Recall, Average Intersection over Union (Average IoU) score, and Average Loss. The training was conducted in four cycles, i.e., 6000, 8000, 10, 000, and 20, 000 max batches with three different activation functions Mish, ReLU, and Linear (used in 6000 and 8000 max batches). The influence train/test dataset ratio was also investigated. The conducted investigation showed that variation of hyperparameters (activation function and max batch sizes) have a significant influence on detection and classification accuracy with the best results obtained in the case of YOLO version 4 (YOLOV4) with the Mish activation function and max batch size of 20, 000 that achieved the highest mAP of 99.96% and lowest average error of 0.3643.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci
Profili:
Zlatan Car (autor)
Nikola Anđelić (autor)
Sandi Baressi Šegota (autor)
Matko Glučina (autor)
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.mdpi.comPoveznice na istraživačke podatke:
doi.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus