Pregled bibliografske jedinice broj: 1228075
Sensing capabilities of ultra-thin BaTiO3 based on optical signals
Sensing capabilities of ultra-thin BaTiO3 based on optical signals // 2nd International Conference on Functional Material and Applied Physics (FMAP-2022) - Book of Abstracts / Sonvane, Yogesh (ur.).
Surat, 2022. str. 12-12 (plenarno, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1228075 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sensing capabilities of ultra-thin BaTiO3 based on
optical signals
Autori
Lukačević, Igor
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
2nd International Conference on Functional Material and Applied Physics (FMAP-2022) - Book of Abstracts
/ Sonvane, Yogesh - Surat, 2022, 12-12
Skup
2nd International Conference on Functional Material and Applied Physics (FMAP 2022)
Mjesto i datum
Online, 14.10.2022. - 15.10.2022
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Nije recenziran
Ključne riječi
senzori ; perovskiti ; optička svojstva ; teorija funkcionala gustoće
(sensors ; perovskites ; optical properties ; density functional theory)
Sažetak
Due to the large presence of carbon oxide gases in both our environment and industry, there is an ongoing search for simple and efficient gas sensors. As a response to the current challenges toward lower limits of detection, in this work we propose a detection of optical signals from ultrathin BaTiO3 nanostructures as the basis for carbon oxides sensing. Based on density functional theory, we simulate the sensitivity of electrical and optical properties of the ultrathin BaTiO3 nanostructure with respect to different adsorption sites on the (001)-BaTiO3 surface. Significant changes in the optical activity, including absorption, reflection and EELS spectra, are detected. Supercell model study showed that optical signals follow a monotonous trend with respect to the molecule concentration. The changes are explained via charge transfer between the (001)-BaTiO3 surface and the adsorbed gas molecules. An insight into the physical and chemical nature of the processes at the nano-scale improves our understanding of the sensing mechanism. At the same time, the obtained results might pave a way to new easy-to-use but robust sensor designs.
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Kemija
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-5246 - Nanokompoziti s perovskitima za fotovoltaike, fotokatalizu i senzoriku (NanoPeroPhotoSens) (Gajović, Andreja, HRZZ - 2018-01) ( CroRIS)
HRZZ-DOK-2021-02-2147 - Nanokompoziti s perovskitima za fotovoltaike, fotokatalizu i senzoriku (NanoPeroPhotoSens) (Lukačević, Igor, HRZZ ) ( CroRIS)
-- - Niskodimenzionalni nanomaterijali - svojstva i primjene (Lukačević, Igor) ( CroRIS)
Ustanove:
Sveučilište u Osijeku - Odjel za fiziku