Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1227148

Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation


Suri, Jasjit S.; Agarwal, Sushant; Saba, Luca; Chabert, Gian Luca; Carriero, Alessandro; Paschè, Alessio; Danna, Pietro; Mehmedović, Armin; Faa, Gavino; Jujaray, Tanay et al.
Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation // Journal of Medical Systems, 46 (2022), 10; 29, 29 doi:10.1007/s10916-022-01850-y (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1227148 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation

Autori
Suri, Jasjit S. ; Agarwal, Sushant ; Saba, Luca ; Chabert, Gian Luca ; Carriero, Alessandro ; Paschè, Alessio ; Danna, Pietro ; Mehmedović, Armin ; Faa, Gavino ; Jujaray, Tanay ; Singh, Inder M. ; Khanna, Narendra N. ; Laird, John R. ; Sfikakis, Petros P. ; Agarwal, Vikas ; Teji, Jagjit S. ; R Yadav, Rajanikant ; Nagy, Ferenc ; Kincses, Zsigmond Tamás ; Ruzsa, Zoltan ; Višković, Klaudija ; Kalra, Mannudeep K.

Izvornik
Journal of Medical Systems (1573-689X) 46 (2022), 10; 29, 29

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
And AI ; COVID-19 ; Glass ground opacities ; Hounsfield units ; Hybrid deep learning ; Lung CT ; Segmentation ; Solo deep learning

Sažetak
Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, "COVLIAS 1.0-Unseen" proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10, 000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations-two Unseen sets: (i) train-CRO:test- ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web- based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci

Profili:

Avatar Url Klaudija Višković (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Suri, Jasjit S.; Agarwal, Sushant; Saba, Luca; Chabert, Gian Luca; Carriero, Alessandro; Paschè, Alessio; Danna, Pietro; Mehmedović, Armin; Faa, Gavino; Jujaray, Tanay et al.
Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation // Journal of Medical Systems, 46 (2022), 10; 29, 29 doi:10.1007/s10916-022-01850-y (međunarodna recenzija, članak, znanstveni)
Suri, J., Agarwal, S., Saba, L., Chabert, G., Carriero, A., Paschè, A., Danna, P., Mehmedović, A., Faa, G. & Jujaray, T. (2022) Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation. Journal of Medical Systems, 46 (10), 29, 29 doi:10.1007/s10916-022-01850-y.
@article{article, author = {Suri, Jasjit S. and Agarwal, Sushant and Saba, Luca and Chabert, Gian Luca and Carriero, Alessandro and Pasch\`{e}, Alessio and Danna, Pietro and Mehmedovi\'{c}, Armin and Faa, Gavino and Jujaray, Tanay and Singh, Inder M. and Khanna, Narendra N. and Laird, John R. and Sfikakis, Petros P. and Agarwal, Vikas and Teji, Jagjit S. and R Yadav, Rajanikant and Nagy, Ferenc and Kincses, Zsigmond Tam\'{a}s and Ruzsa, Zoltan and Vi\v{s}kovi\'{c}, Klaudija and Kalra, Mannudeep K.}, year = {2022}, pages = {29}, DOI = {10.1007/s10916-022-01850-y}, chapter = {29}, keywords = {And AI, COVID-19, Glass ground opacities, Hounsfield units, Hybrid deep learning, Lung CT, Segmentation, Solo deep learning}, journal = {Journal of Medical Systems}, doi = {10.1007/s10916-022-01850-y}, volume = {46}, number = {10}, issn = {1573-689X}, title = {Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation}, keyword = {And AI, COVID-19, Glass ground opacities, Hounsfield units, Hybrid deep learning, Lung CT, Segmentation, Solo deep learning}, chapternumber = {29} }
@article{article, author = {Suri, Jasjit S. and Agarwal, Sushant and Saba, Luca and Chabert, Gian Luca and Carriero, Alessandro and Pasch\`{e}, Alessio and Danna, Pietro and Mehmedovi\'{c}, Armin and Faa, Gavino and Jujaray, Tanay and Singh, Inder M. and Khanna, Narendra N. and Laird, John R. and Sfikakis, Petros P. and Agarwal, Vikas and Teji, Jagjit S. and R Yadav, Rajanikant and Nagy, Ferenc and Kincses, Zsigmond Tam\'{a}s and Ruzsa, Zoltan and Vi\v{s}kovi\'{c}, Klaudija and Kalra, Mannudeep K.}, year = {2022}, pages = {29}, DOI = {10.1007/s10916-022-01850-y}, chapter = {29}, keywords = {And AI, COVID-19, Glass ground opacities, Hounsfield units, Hybrid deep learning, Lung CT, Segmentation, Solo deep learning}, journal = {Journal of Medical Systems}, doi = {10.1007/s10916-022-01850-y}, volume = {46}, number = {10}, issn = {1573-689X}, title = {Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation}, keyword = {And AI, COVID-19, Glass ground opacities, Hounsfield units, Hybrid deep learning, Lung CT, Segmentation, Solo deep learning}, chapternumber = {29} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font