Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1226985

COVLIAS 1.0 vs. MedSeg: Artificial Intelligence- Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts


Suri, Jasjit S.; Agarwal, Sushant; Carriero, Alessandro; Paschè, Alessio; Danna, Pietro S. C.; Columbu, Marta; Saba, Luca; Višković, Klaudija; Mehmedović, Armin; Agarwal, Samriddhi et al.
COVLIAS 1.0 vs. MedSeg: Artificial Intelligence- Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts // Diagnostics, 11 (2021), 12; 27, 27 doi:10.3390/diagnostics11122367 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1226985 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
COVLIAS 1.0 vs. MedSeg: Artificial Intelligence- Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts

Autori
Suri, Jasjit S. ; Agarwal, Sushant ; Carriero, Alessandro ; Paschè, Alessio ; Danna, Pietro S. C. ; Columbu, Marta ; Saba, Luca ; Višković, Klaudija ; Mehmedović, Armin ; Agarwal, Samriddhi ; Gupta, Lakshya ; Faa, Gavino ; Singh, Inder M. ; Turk, Monika ; Chadha, Paramjit S. ; Johri, Amer M. ; Khanna, Narendra N. ; Mavrogeni, Sophie ; Laird, John R. ; Pareek, Gyan ; Miner, Martin ; Sobel, David W. ; Balestrieri, Antonella ; Sfikakis, Petros P. ; Tsoulfas, George ; Protogerou, Athanasios ; Misra, Durga Prasanna ; Agarwal, Vikas ; Kitas, George D. ; Teji, Jagjit S. ; Al- Maini, Mustafa ; Dhanjil, Surinder K. ; Nicolaides, Andrew ; Sharma, Aditya ; Rathore, Vijay ; Fatemi, Mostafa ; Alizad, Azra ; Krishnan, Pudukode R. ; Nagy, Ferenc ; Ruzsa, Zoltan ; Gupta, Archna ; Naidu, Subbaram ; Paraskevas, Kosmas I. ; Kalra, Mannudeep K.

Izvornik
Diagnostics (2075-4418) 11 (2021), 12; 27, 27

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
COVID-19 ; CT ; lung segmentation ; COVLIAS ; MedSeg ; AI ; DL ; HDL ; validation ; benchmark.4

Sažetak
(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020–2021 were semiautomated or automated but not accurate, user-friendly, and industry- standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription- polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland–Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci

Profili:

Avatar Url Klaudija Višković (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Suri, Jasjit S.; Agarwal, Sushant; Carriero, Alessandro; Paschè, Alessio; Danna, Pietro S. C.; Columbu, Marta; Saba, Luca; Višković, Klaudija; Mehmedović, Armin; Agarwal, Samriddhi et al.
COVLIAS 1.0 vs. MedSeg: Artificial Intelligence- Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts // Diagnostics, 11 (2021), 12; 27, 27 doi:10.3390/diagnostics11122367 (međunarodna recenzija, članak, znanstveni)
Suri, J., Agarwal, S., Carriero, A., Paschè, A., Danna, P., Columbu, M., Saba, L., Višković, K., Mehmedović, A. & Agarwal, S. (2021) COVLIAS 1.0 vs. MedSeg: Artificial Intelligence- Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts. Diagnostics, 11 (12), 27, 27 doi:10.3390/diagnostics11122367.
@article{article, author = {Suri, Jasjit S. and Agarwal, Sushant and Carriero, Alessandro and Pasch\`{e}, Alessio and Danna, Pietro S. C. and Columbu, Marta and Saba, Luca and Vi\v{s}kovi\'{c}, Klaudija and Mehmedovi\'{c}, Armin and Agarwal, Samriddhi and Gupta, Lakshya and Faa, Gavino and Singh, Inder M. and Turk, Monika and Chadha, Paramjit S. and Johri, Amer M. and Khanna, Narendra N. and Mavrogeni, Sophie and Laird, John R. and Pareek, Gyan and Miner, Martin and Sobel, David W. and Balestrieri, Antonella and Sfikakis, Petros P. and Tsoulfas, George and Protogerou, Athanasios and Misra, Durga Prasanna and Agarwal, Vikas and Kitas, George D. and Teji, Jagjit S. and Al- Maini, Mustafa and Dhanjil, Surinder K. and Nicolaides, Andrew and Sharma, Aditya and Rathore, Vijay and Fatemi, Mostafa and Alizad, Azra and Krishnan, Pudukode R. and Nagy, Ferenc and Ruzsa, Zoltan and Gupta, Archna and Naidu, Subbaram and Paraskevas, Kosmas I. and Kalra, Mannudeep K.}, year = {2021}, pages = {27}, DOI = {10.3390/diagnostics11122367}, chapter = {27}, keywords = {COVID-19, CT, lung segmentation, COVLIAS, MedSeg, AI, DL, HDL, validation, benchmark.4}, journal = {Diagnostics}, doi = {10.3390/diagnostics11122367}, volume = {11}, number = {12}, issn = {2075-4418}, title = {COVLIAS 1.0 vs. MedSeg: Artificial Intelligence- Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts}, keyword = {COVID-19, CT, lung segmentation, COVLIAS, MedSeg, AI, DL, HDL, validation, benchmark.4}, chapternumber = {27} }
@article{article, author = {Suri, Jasjit S. and Agarwal, Sushant and Carriero, Alessandro and Pasch\`{e}, Alessio and Danna, Pietro S. C. and Columbu, Marta and Saba, Luca and Vi\v{s}kovi\'{c}, Klaudija and Mehmedovi\'{c}, Armin and Agarwal, Samriddhi and Gupta, Lakshya and Faa, Gavino and Singh, Inder M. and Turk, Monika and Chadha, Paramjit S. and Johri, Amer M. and Khanna, Narendra N. and Mavrogeni, Sophie and Laird, John R. and Pareek, Gyan and Miner, Martin and Sobel, David W. and Balestrieri, Antonella and Sfikakis, Petros P. and Tsoulfas, George and Protogerou, Athanasios and Misra, Durga Prasanna and Agarwal, Vikas and Kitas, George D. and Teji, Jagjit S. and Al- Maini, Mustafa and Dhanjil, Surinder K. and Nicolaides, Andrew and Sharma, Aditya and Rathore, Vijay and Fatemi, Mostafa and Alizad, Azra and Krishnan, Pudukode R. and Nagy, Ferenc and Ruzsa, Zoltan and Gupta, Archna and Naidu, Subbaram and Paraskevas, Kosmas I. and Kalra, Mannudeep K.}, year = {2021}, pages = {27}, DOI = {10.3390/diagnostics11122367}, chapter = {27}, keywords = {COVID-19, CT, lung segmentation, COVLIAS, MedSeg, AI, DL, HDL, validation, benchmark.4}, journal = {Diagnostics}, doi = {10.3390/diagnostics11122367}, volume = {11}, number = {12}, issn = {2075-4418}, title = {COVLIAS 1.0 vs. MedSeg: Artificial Intelligence- Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts}, keyword = {COVID-19, CT, lung segmentation, COVLIAS, MedSeg, AI, DL, HDL, validation, benchmark.4}, chapternumber = {27} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font