Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1226662

Analysis of skin hyperspectral images by machine learning methods


Milanič, Matija; Manojlović, Teo; Tomanič, Tadej; Štajduhar, Ivan
Analysis of skin hyperspectral images by machine learning methods // APS March Meeting
Chicago (IL), Sjedinjene Američke Države, 2022. 2022APS..MARQ29003M, 1 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1226662 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Analysis of skin hyperspectral images by machine learning methods

Autori
Milanič, Matija ; Manojlović, Teo ; Tomanič, Tadej ; Štajduhar, Ivan

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
APS March Meeting

Mjesto i datum
Chicago (IL), Sjedinjene Američke Države, 14.03.2022. - 18.03.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
hyperspectral imaging ; skin image analysis ; machine learning

Sažetak
Hyperspectral images (HSI) are optical images containing both spatial and spectral information about the imaged object. The current image analysis include different derivatives of the radiative transfer equation, which are either slow or inaccurate. A possible solution is implementation of machine learning methods (ML). In this study, hyperspectral images of skin were analyzed using three different ML models: artificial neural network (ANN), convolutional neural network (CNN), and random forests (RF). Skin parameters were extracted and compared to the parameters extracted by the golden standard, i.e. inverse Adding-Doubling method (IAD). The average MAE (mean absolute error) obtained on the simulated skin spectra, where IAD results served as the ground truth, was 0.003, 0.007 and 0.009 for RF, CNN and ANN, respectively. On the experimental data, the average MAE was approx. 0.06 for all ML methods. Time to estimate parametersfor from a single spectrum by ML methods is 90 μs, compared to 0.4 s for AD. We demonstrated that ML methods could be used to analyzeHSI images of biological tissues in almost real time resulting in slightly lower estimated parameter accuracy compared to IAD. Funding: ARRS P1-0389, HRZZ IP-2020-02-3770, uniri-tehnic-18-15.

Izvorni jezik
Engleski

Znanstvena područja
Fizika, Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Poveznice na cjeloviti tekst rada:

ui.adsabs.harvard.edu

Citiraj ovu publikaciju:

Milanič, Matija; Manojlović, Teo; Tomanič, Tadej; Štajduhar, Ivan
Analysis of skin hyperspectral images by machine learning methods // APS March Meeting
Chicago (IL), Sjedinjene Američke Države, 2022. 2022APS..MARQ29003M, 1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Milanič, M., Manojlović, T., Tomanič, T. & Štajduhar, I. (2022) Analysis of skin hyperspectral images by machine learning methods. U: APS March Meeting.
@article{article, author = {Milani\v{c}, Matija and Manojlovi\'{c}, Teo and Tomani\v{c}, Tadej and \v{S}tajduhar, Ivan}, year = {2022}, pages = {1}, chapter = {2022APS..MARQ29003M}, keywords = {hyperspectral imaging, skin image analysis, machine learning}, title = {Analysis of skin hyperspectral images by machine learning methods}, keyword = {hyperspectral imaging, skin image analysis, machine learning}, publisherplace = {Chicago (IL), Sjedinjene Ameri\v{c}ke Dr\v{z}ave}, chapternumber = {2022APS..MARQ29003M} }
@article{article, author = {Milani\v{c}, Matija and Manojlovi\'{c}, Teo and Tomani\v{c}, Tadej and \v{S}tajduhar, Ivan}, year = {2022}, pages = {1}, chapter = {2022APS..MARQ29003M}, keywords = {hyperspectral imaging, skin image analysis, machine learning}, title = {Analysis of skin hyperspectral images by machine learning methods}, keyword = {hyperspectral imaging, skin image analysis, machine learning}, publisherplace = {Chicago (IL), Sjedinjene Ameri\v{c}ke Dr\v{z}ave}, chapternumber = {2022APS..MARQ29003M} }




Contrast
Increase Font
Decrease Font
Dyslexic Font