Pregled bibliografske jedinice broj: 1226662
Analysis of skin hyperspectral images by machine learning methods
Analysis of skin hyperspectral images by machine learning methods // APS March Meeting
Chicago (IL), Sjedinjene Američke Države, 2022. 2022APS..MARQ29003M, 1 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1226662 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of skin hyperspectral images by machine
learning methods
Autori
Milanič, Matija ; Manojlović, Teo ; Tomanič, Tadej ; Štajduhar, Ivan
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
APS March Meeting
Mjesto i datum
Chicago (IL), Sjedinjene Američke Države, 14.03.2022. - 18.03.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
hyperspectral imaging ; skin image analysis ; machine learning
Sažetak
Hyperspectral images (HSI) are optical images containing both spatial and spectral information about the imaged object. The current image analysis include different derivatives of the radiative transfer equation, which are either slow or inaccurate. A possible solution is implementation of machine learning methods (ML). In this study, hyperspectral images of skin were analyzed using three different ML models: artificial neural network (ANN), convolutional neural network (CNN), and random forests (RF). Skin parameters were extracted and compared to the parameters extracted by the golden standard, i.e. inverse Adding-Doubling method (IAD). The average MAE (mean absolute error) obtained on the simulated skin spectra, where IAD results served as the ground truth, was 0.003, 0.007 and 0.009 for RF, CNN and ANN, respectively. On the experimental data, the average MAE was approx. 0.06 for all ML methods. Time to estimate parametersfor from a single spectrum by ML methods is 90 μs, compared to 0.4 s for AD. We demonstrated that ML methods could be used to analyzeHSI images of biological tissues in almost real time resulting in slightly lower estimated parameter accuracy compared to IAD. Funding: ARRS P1-0389, HRZZ IP-2020-02-3770, uniri-tehnic-18-15.
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Ivan Štajduhar
(autor)