Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1225726

Detection of Defective Bolts from Rotational Ultrasonic Scans Using Convolutional Neural Networks


Medak, Duje; Milkovic, Fran; Posilovic, Luka; Subasic, Marko; Budimir, Marko; Loncaric, Sven
Detection of Defective Bolts from Rotational Ultrasonic Scans Using Convolutional Neural Networks // Proceedings of 2022 27th International Conference on Automation and Computing (ICAC)
Bristol, Ujedinjeno Kraljevstvo: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-6 doi:10.1109/icac55051.2022.9911145 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1225726 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Detection of Defective Bolts from Rotational Ultrasonic Scans Using Convolutional Neural Networks

Autori
Medak, Duje ; Milkovic, Fran ; Posilovic, Luka ; Subasic, Marko ; Budimir, Marko ; Loncaric, Sven

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 2022 27th International Conference on Automation and Computing (ICAC) / - : Institute of Electrical and Electronics Engineers (IEEE), 2022, 1-6

Skup
27th International Conference on Automation and Computing (ICAC)

Mjesto i datum
Bristol, Ujedinjeno Kraljevstvo, 01.09.2022. - 03.09.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
non-destructive testing, ultrasonic scans, deep learning

Sažetak
Bolts are one of the primary components used when constructing complex systems such as power plants, factories, railways, and similar. Due to constant stress over the years, various types of defects can appear inside bolts, making the overall structure unsafe. Detection of defective bolts can be done by employing a non-destructive material evaluation technique, such as ultrasonic testing (UT). However, the amount of data acquired during the inspection is often large, so the analysis, nowadays performed manually, lasts a long time. In this work, we propose a method based on a convolutional neural network (CNN) to classify ultrasonic scans and detect defective bolts. We propose a novel representation of the ultrasonic B-scans that we call rotational B-scans. By transforming the original database of B-scans into this novel representation, the number of images displaying a defect increases. This balances the dataset, decreases the dataset variance, and makes the training of a deep convolutional neural network significantly easier. We tested many existing architectures and based on our findings we designed a custom encoder-decoder-based classifier. Our model outperformed all the other tested models and reached an area under the receiver operating characteristic curve (AUC-ROC) of 97.4%.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Medak, Duje; Milkovic, Fran; Posilovic, Luka; Subasic, Marko; Budimir, Marko; Loncaric, Sven
Detection of Defective Bolts from Rotational Ultrasonic Scans Using Convolutional Neural Networks // Proceedings of 2022 27th International Conference on Automation and Computing (ICAC)
Bristol, Ujedinjeno Kraljevstvo: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-6 doi:10.1109/icac55051.2022.9911145 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Medak, D., Milkovic, F., Posilovic, L., Subasic, M., Budimir, M. & Loncaric, S. (2022) Detection of Defective Bolts from Rotational Ultrasonic Scans Using Convolutional Neural Networks. U: Proceedings of 2022 27th International Conference on Automation and Computing (ICAC) doi:10.1109/icac55051.2022.9911145.
@article{article, author = {Medak, Duje and Milkovic, Fran and Posilovic, Luka and Subasic, Marko and Budimir, Marko and Loncaric, Sven}, year = {2022}, pages = {1-6}, DOI = {10.1109/icac55051.2022.9911145}, keywords = {non-destructive testing, ultrasonic scans, deep learning}, doi = {10.1109/icac55051.2022.9911145}, title = {Detection of Defective Bolts from Rotational Ultrasonic Scans Using Convolutional Neural Networks}, keyword = {non-destructive testing, ultrasonic scans, deep learning}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Bristol, Ujedinjeno Kraljevstvo} }
@article{article, author = {Medak, Duje and Milkovic, Fran and Posilovic, Luka and Subasic, Marko and Budimir, Marko and Loncaric, Sven}, year = {2022}, pages = {1-6}, DOI = {10.1109/icac55051.2022.9911145}, keywords = {non-destructive testing, ultrasonic scans, deep learning}, doi = {10.1109/icac55051.2022.9911145}, title = {Detection of Defective Bolts from Rotational Ultrasonic Scans Using Convolutional Neural Networks}, keyword = {non-destructive testing, ultrasonic scans, deep learning}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Bristol, Ujedinjeno Kraljevstvo} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font