Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1224738

Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings


Adžaga, Nikola; Chidambaram, Shiva; Keller, Timo; Padurariu, Oana
Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings // Research in number theory, 8 (2022), 87, 24 doi:10.1007/s40993-022-00388-9 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1224738 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings

Autori
Adžaga, Nikola ; Chidambaram, Shiva ; Keller, Timo ; Padurariu, Oana

Izvornik
Research in number theory (2522-0160) 8 (2022); 87, 24

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Rational points ; Curves of arbitrary genus or genus 6= 1 over global fields ; arithmetic aspects of modular and Shimura varieties

Sažetak
We complete the computation of all Q-rational points on all the 64 maximal Atkin-Lehner quotients X0(N)∗ such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square- free levels N, we classify all Q-rational points as cusps, CM points (including their CM field and j-invariants) and exceptional ones. We further indicate how to use this to compute the Q-rational points on all of their modular coverings.

Izvorni jezik
Engleski

Znanstvena područja
Matematika

Napomena
Rad je prihvaćen na Algorithmic Number Theory
Symposium, ANTS-XV, konferenciji koja se održala u
kolovozu 2022. Svi radovi s konferencije (njih 26)
objavljeni su u posebnom broju časopisa Research
in Number Theory.



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-1313 - Diofantska geometrija i primjene (DIOPHANT) (Kazalicki, Matija, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Građevinski fakultet, Zagreb

Profili:

Avatar Url Nikola Adžaga (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Poveznice na istraživačke podatke:

github.com

Citiraj ovu publikaciju:

Adžaga, Nikola; Chidambaram, Shiva; Keller, Timo; Padurariu, Oana
Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings // Research in number theory, 8 (2022), 87, 24 doi:10.1007/s40993-022-00388-9 (međunarodna recenzija, članak, znanstveni)
Adžaga, N., Chidambaram, S., Keller, T. & Padurariu, O. (2022) Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings. Research in number theory, 8, 87, 24 doi:10.1007/s40993-022-00388-9.
@article{article, author = {Ad\v{z}aga, Nikola and Chidambaram, Shiva and Keller, Timo and Padurariu, Oana}, year = {2022}, pages = {24}, DOI = {10.1007/s40993-022-00388-9}, chapter = {87}, keywords = {Rational points, Curves of arbitrary genus or genus 6= 1 over global fields, arithmetic aspects of modular and Shimura varieties}, journal = {Research in number theory}, doi = {10.1007/s40993-022-00388-9}, volume = {8}, issn = {2522-0160}, title = {Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings}, keyword = {Rational points, Curves of arbitrary genus or genus 6= 1 over global fields, arithmetic aspects of modular and Shimura varieties}, chapternumber = {87} }
@article{article, author = {Ad\v{z}aga, Nikola and Chidambaram, Shiva and Keller, Timo and Padurariu, Oana}, year = {2022}, pages = {24}, DOI = {10.1007/s40993-022-00388-9}, chapter = {87}, keywords = {Rational points, Curves of arbitrary genus or genus 6= 1 over global fields, arithmetic aspects of modular and Shimura varieties}, journal = {Research in number theory}, doi = {10.1007/s40993-022-00388-9}, volume = {8}, issn = {2522-0160}, title = {Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings}, keyword = {Rational points, Curves of arbitrary genus or genus 6= 1 over global fields, arithmetic aspects of modular and Shimura varieties}, chapternumber = {87} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font