Pregled bibliografske jedinice broj: 1224736
Quadratic Chabauty for Atkin-Lehner Quotients of Modular Curves of Prime Level and Genus 4, 5, 6
Quadratic Chabauty for Atkin-Lehner Quotients of Modular Curves of Prime Level and Genus 4, 5, 6 // Acta Arithmetica (2022) (znanstveni, prihvaćen)
CROSBI ID: 1224736 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Quadratic Chabauty for Atkin-Lehner Quotients of
Modular Curves of Prime Level and Genus 4, 5, 6
Autori
Adžaga, Nikola ; Arul, Vishal ; Beneish, Lea ; Chen, Mingjie ; Chidambaram, Shiva ; Keller, Timo ; Wen, Boya
Vrsta, podvrsta
Radovi u časopisima,
znanstveni
Izvornik
Acta Arithmetica (2022)
Status rada
Prihvaćen
Ključne riječi
Rational points ; Curves of arbitrary genus or genus 6= 1 over global fields ; arithmetic aspects of modular and Shimura varieties
Sažetak
We use the method of quadratic Chabauty on the quotients X0(N)+ of modular curves X0(N) by their Fricke involutions to provably compute all the rational points of these curves for prime levels N of genus four, five, and six. We find that the only such curves with exceptional rational points are of levels 137 and 311. In particular there are no exceptional rational points on those curves of genus five and six. More precisely, we determine the rational points on the curves X0(N)+ for N = 137, 173, 199, 251, 311, 157, 181, 227, 263, 163, 197, 211, 223, 269, 271, 359.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-1313 - Diofantska geometrija i primjene (DIOPHANT) (Kazalicki, Matija, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Nikola Adžaga
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus