Pregled bibliografske jedinice broj: 1221759
Existence of strong traces of degenerate parabolic equations via velocity averaging
Existence of strong traces of degenerate parabolic equations via velocity averaging // Croatian German meeting on analysis and Mathematical physics
Virtualni događaj, 2021. (pozvano predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
CROSBI ID: 1221759 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Existence of strong traces of degenerate parabolic
equations via velocity averaging
Autori
Erceg, Marko ; Mitrović, Darko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Croatian German meeting on analysis and Mathematical physics
Mjesto i datum
Virtualni događaj, 22.03.2021. - 25.03.2021
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
degenerate parabolic equations ; strong traces ; kinetic formulation
Sažetak
In this talk we study solutions to the degenerate parabolic equation $$ \partial_t u + \operatorname{; ; div}; ; _x f(u) = \operatorname{; ; div}; ; _x(a(u)\nabla u) \, , $$ subject to the initial condition $u(0, \cdot)=u_0$. Here the degeneracy appears as the matrix $a(\lambda)$ is only positive semi- definite, i.e.~it can be equal to zero in some directions. Moreover, the directions can depend on $\lambda$. %, which is the main novelty. Equations of this form often occur in modelling flows in porous media and sedimentation- consolidation processes. As a consequence of the degeneracy, solutions could be singular, so one needs to justify the meaning of the initial condition. A standard way is to show that $u_0$ is the strong trace of a solution $u$ at $t=0$. The notion of strong traces proved to be very useful in showing the uniqueness of the solution to scalar conservation laws with discontinuous flux. We prove existence of strong traces for entropy solutions to the equation above. No non-degeneracy conditions on $f$ and $a$ are required. The proof is based on the blow-up techniques and the velocity averaging result for ultra-parabolic equations, applied to the kinetic formulation. In some special situations, we can allow even for heterogeneous fluxes and diffusion matrices, i.e.~$f$ and $a$ dependent of $(t, x)$ as well.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-2449 - Mikrolokalni defektni alati u parcijalnim diferencijalnim jednadžbama (MiTPDE) (Antonić, Nenad, HRZZ - 2018-01) ( CroRIS)
HRZZ-UIP-2017-05-7249 - Matematička analiza i numeričke metode za višefazne sustave vođene difuzijom (MANDphy) (Bukal, Mario, HRZZ ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb