Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1221373

Classification of classical Friedrichs differential operators: One-dimensional scalar case


Erceg, Marko; Soni, Sandeep Kumar
Classification of classical Friedrichs differential operators: One-dimensional scalar case // Communications on pure and applied analysis, 21 (2022), 10; 3499-3527 doi:10.3934/cpaa.2022112 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1221373 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Classification of classical Friedrichs differential operators: One-dimensional scalar case

Autori
Erceg, Marko ; Soni, Sandeep Kumar

Izvornik
Communications on pure and applied analysis (1534-0392) 21 (2022), 10; 3499-3527

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
symmetric positive first-order system of partial differential equations ; dual pairs ; indefinite inner product space ; universal parametrisation of extensions

Sažetak
The theory of abstract Friedrichs operators, introduced by Ern, Guermond and Caplain (2007), proved to be a successful setting for studying positive symmetric systems of first order partial differential equations (Friedrichs, 1958), nowadays better known as Friedrichs systems. Recently, Antonić, Michelangeli and Erceg (2017) presented a purely operator-theoretic description of abstract Friedrichs operators, allowing for application of the universal operator extension theory (Grubb, 1968). In this paper we make a further theoretical step by developing a decomposition of the graph space (maximal domain) as a direct sum of the minimal domain and the kernels of corresponding adjoints. We then study one-dimensional scalar (classical) Friedrichs operators with variable coefficients and present a complete classification of admissible boundary conditions.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-2449 - Mikrolokalni defektni alati u parcijalnim diferencijalnim jednadžbama (MiTPDE) (Antonić, Nenad, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Sandeep Kumar Soni (autor)

Avatar Url Marko Erceg (autor)

Citiraj ovu publikaciju:

Erceg, Marko; Soni, Sandeep Kumar
Classification of classical Friedrichs differential operators: One-dimensional scalar case // Communications on pure and applied analysis, 21 (2022), 10; 3499-3527 doi:10.3934/cpaa.2022112 (međunarodna recenzija, članak, znanstveni)
Erceg, M. & Soni, S. (2022) Classification of classical Friedrichs differential operators: One-dimensional scalar case. Communications on pure and applied analysis, 21 (10), 3499-3527 doi:10.3934/cpaa.2022112.
@article{article, author = {Erceg, Marko and Soni, Sandeep Kumar}, year = {2022}, pages = {3499-3527}, DOI = {10.3934/cpaa.2022112}, keywords = {symmetric positive first-order system of partial differential equations, dual pairs, indefinite inner product space, universal parametrisation of extensions}, journal = {Communications on pure and applied analysis}, doi = {10.3934/cpaa.2022112}, volume = {21}, number = {10}, issn = {1534-0392}, title = {Classification of classical Friedrichs differential operators: One-dimensional scalar case}, keyword = {symmetric positive first-order system of partial differential equations, dual pairs, indefinite inner product space, universal parametrisation of extensions} }
@article{article, author = {Erceg, Marko and Soni, Sandeep Kumar}, year = {2022}, pages = {3499-3527}, DOI = {10.3934/cpaa.2022112}, keywords = {symmetric positive first-order system of partial differential equations, dual pairs, indefinite inner product space, universal parametrisation of extensions}, journal = {Communications on pure and applied analysis}, doi = {10.3934/cpaa.2022112}, volume = {21}, number = {10}, issn = {1534-0392}, title = {Classification of classical Friedrichs differential operators: One-dimensional scalar case}, keyword = {symmetric positive first-order system of partial differential equations, dual pairs, indefinite inner product space, universal parametrisation of extensions} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font