Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1219603

Predicting TV Viewership with Regression Models


Seric, Ljiljana; Miletic, Dino; Ivanda, Antonia; Braovic, Maja
Predicting TV Viewership with Regression Models // 7th International Conference on Smart and Sustainable Technologies (SpliTech)
Bol, Hrvatska; Split, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-7 doi:10.23919/splitech55088.2022.9854230 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1219603 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predicting TV Viewership with Regression Models

Autori
Seric, Ljiljana ; Miletic, Dino ; Ivanda, Antonia ; Braovic, Maja

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

ISBN
978-1-6654-8828-0

Skup
7th International Conference on Smart and Sustainable Technologies (SpliTech)

Mjesto i datum
Bol, Hrvatska; Split, Hrvatska, 05.07.2022. - 08.07.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
regression model, predicting TV viewership, LSTM network, neural network, time series prediction

Sažetak
In this paper were analyzed the applicability of regression models to the problem of real time viewership prediction. In this paper the analysis is based on precise viewership data obtained from the national company responsible for maintaining the broadcasting infrastructure. The viewership data and the TV schedule archive data were preprocessed to create a dataset on which the analysis is performed. Analysis was performed on the correlation of the number of viewers with time series trends and TV schedule features. The results were compared with several implemented and trained models, and compared with the performance of various tested models. In this paper is described the methodology of building the models and discussed the obtained results.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Profili:

Avatar Url Ljiljana Šerić (autor)

Avatar Url Maja Braović (autor)

Avatar Url Antonia Ivanda (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Seric, Ljiljana; Miletic, Dino; Ivanda, Antonia; Braovic, Maja
Predicting TV Viewership with Regression Models // 7th International Conference on Smart and Sustainable Technologies (SpliTech)
Bol, Hrvatska; Split, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-7 doi:10.23919/splitech55088.2022.9854230 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Seric, L., Miletic, D., Ivanda, A. & Braovic, M. (2022) Predicting TV Viewership with Regression Models. U: 7th International Conference on Smart and Sustainable Technologies (SpliTech) doi:10.23919/splitech55088.2022.9854230.
@article{article, author = {Seric, Ljiljana and Miletic, Dino and Ivanda, Antonia and Braovic, Maja}, year = {2022}, pages = {1-7}, DOI = {10.23919/splitech55088.2022.9854230}, keywords = {regression model, predicting TV viewership, LSTM network, neural network, time series prediction}, doi = {10.23919/splitech55088.2022.9854230}, isbn = {978-1-6654-8828-0}, title = {Predicting TV Viewership with Regression Models}, keyword = {regression model, predicting TV viewership, LSTM network, neural network, time series prediction}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Bol, Hrvatska; Split, Hrvatska} }
@article{article, author = {Seric, Ljiljana and Miletic, Dino and Ivanda, Antonia and Braovic, Maja}, year = {2022}, pages = {1-7}, DOI = {10.23919/splitech55088.2022.9854230}, keywords = {regression model, predicting TV viewership, LSTM network, neural network, time series prediction}, doi = {10.23919/splitech55088.2022.9854230}, isbn = {978-1-6654-8828-0}, title = {Predicting TV Viewership with Regression Models}, keyword = {regression model, predicting TV viewership, LSTM network, neural network, time series prediction}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Bol, Hrvatska; Split, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font