Pregled bibliografske jedinice broj: 1218524
Prediction of main particulars of container ships using artificial intelligence algorithms
Prediction of main particulars of container ships using artificial intelligence algorithms // Ocean engineering, 265 (2022), 112571, 14 doi:10.1016/j.oceaneng.2022.112571 (meÄunarodna recenzija, Älanak, znanstveni)
CROSBI ID: 1218524 Za ispravke kontaktirajte CROSBI podrŔku putem web obrasca
Naslov
Prediction of main particulars of container ships using artificial intelligence algorithms
Autori
MajnariÄ, Darin ; Baressi Å egota, Sandi ; Lorencin, Ivan ; Car, Zlatan
Izvornik
Ocean engineering (0029-8018) 265
(2022);
112571, 14
Vrsta, podvrsta i kategorija rada
Radovi u Äasopisima, Älanak, znanstveni
KljuÄne rijeÄi
Artificial intelligence algorithms ; Container ships ; Main particulars ; Preliminary ship design
Sažetak
The value of the main ship particulars are key values to determine during initial design of a vessel, but they can be complex to determine, as they depend on a large number of factors. The presented research attempts to model the main particulars: length between perpendiculars (LPP), length overall (LOA), modulated breadth (B), depth (D), draught (T), gross tonnage (GT), net tonnage (NT), deadweight (DWT), and engine power, using only key request factors: number of twenty-foot equivalent units (TEU) the vessel is expected to carry, and the expected speed of the ship (V). As this is a complex task, artificial intelligence (AI) techniques are applied to the dataset consisting of 250 container ships. Two modeling techniques are used: multilayer perceptron (MLP) and gradient boosted trees (GBT). The model hyperparameters are trained using a grid search procedure and evaluated using mean absolute percentage error (šš“š šø) and coefficient of determination (š
2) in a 5-fold cross-validation scheme. The obtained results show that a quality model can be achieved using both techniques, except in the case of engine power for which a high-quality model has not been regressed. Models presented here can have practical application in the determination of the shipās main particulars at the preliminary design stage.
Izvorni jezik
Engleski
Znanstvena podruÄja
Brodogradnja, RaÄunarstvo, Temeljne tehniÄke znanosti, Interdisciplinarne tehniÄke znanosti
POVEZANOST RADA
Projekti:
NadSve-SveuÄiliÅ”te u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokraÄnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; SlaviÄ, NataÅ”a; Vilke, SiniÅ”a) ( CroRIS)
Profili:
Zlatan Car (autor)
Sandi Baressi Å egota (autor)
Darin MajnariÄ (autor)
Ivan Lorencin (autor)
Citiraj ovu publikaciju:
Äasopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus