Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1217967

A canonical form for positive definite matrices


Dutour Sikirić, Mathieu; Haensch, Anna; Voight, John; van Woerden, Wessel P.J.
A canonical form for positive definite matrices // Ants XIV: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Series 4 / Galbraith, Steven (ur.).
Auckland, Novi Zeland: Mathematical Sciences Publishers, 2020. str. 179-195 doi:10.2140/obs.2020.4.179 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1217967 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A canonical form for positive definite matrices

Autori
Dutour Sikirić, Mathieu ; Haensch, Anna ; Voight, John ; van Woerden, Wessel P.J.

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Ants XIV: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Series 4 / Galbraith, Steven - : Mathematical Sciences Publishers, 2020, 179-195

ISBN
978-1-935107-08-8

Skup
14th Algorithmic Number Theory Symposium (ANTS-XIV)

Mjesto i datum
Auckland, Novi Zeland, 29.06.2020. - 02.07.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
canonical form ; quadratic form ; positive definite matrix ; lattice isomorphism ; graph isomorphism

Sažetak
We exhibit an explicit, deterministic algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations. We use characteristic sets of short vectors and partition-backtracking graph software. The algorithm runs in a number of arithmetic operations that is exponential in the dimension n, but it is practical and more efficient than canonical forms based on Minkowski reduction.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)

Poveznice na cjeloviti tekst rada:

doi msp.org doi.org

Citiraj ovu publikaciju:

Dutour Sikirić, Mathieu; Haensch, Anna; Voight, John; van Woerden, Wessel P.J.
A canonical form for positive definite matrices // Ants XIV: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Series 4 / Galbraith, Steven (ur.).
Auckland, Novi Zeland: Mathematical Sciences Publishers, 2020. str. 179-195 doi:10.2140/obs.2020.4.179 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Dutour Sikirić, M., Haensch, A., Voight, J. & van Woerden, W. (2020) A canonical form for positive definite matrices. U: Galbraith, S. (ur.)Ants XIV: Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Series 4 doi:10.2140/obs.2020.4.179.
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Haensch, Anna and Voight, John and van Woerden, Wessel P.J.}, editor = {Galbraith, S.}, year = {2020}, pages = {179-195}, DOI = {10.2140/obs.2020.4.179}, keywords = {canonical form, quadratic form, positive definite matrix, lattice isomorphism, graph isomorphism}, doi = {10.2140/obs.2020.4.179}, isbn = {978-1-935107-08-8}, title = {A canonical form for positive definite matrices}, keyword = {canonical form, quadratic form, positive definite matrix, lattice isomorphism, graph isomorphism}, publisher = {Mathematical Sciences Publishers}, publisherplace = {Auckland, Novi Zeland} }
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Haensch, Anna and Voight, John and van Woerden, Wessel P.J.}, editor = {Galbraith, S.}, year = {2020}, pages = {179-195}, DOI = {10.2140/obs.2020.4.179}, keywords = {canonical form, quadratic form, positive definite matrix, lattice isomorphism, graph isomorphism}, doi = {10.2140/obs.2020.4.179}, isbn = {978-1-935107-08-8}, title = {A canonical form for positive definite matrices}, keyword = {canonical form, quadratic form, positive definite matrix, lattice isomorphism, graph isomorphism}, publisher = {Mathematical Sciences Publishers}, publisherplace = {Auckland, Novi Zeland} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font