Pregled bibliografske jedinice broj: 1217749
Sim2Air - Synthetic Aerial Dataset for UAV Monitoring
Sim2Air - Synthetic Aerial Dataset for UAV Monitoring // IEEE Robotics and Automation Letters, 7 (2022), 2; 3757-3764 doi:10.1109/lra.2022.3147337 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1217749 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sim2Air - Synthetic Aerial Dataset for UAV Monitoring
Autori
Barisic, Antonella ; Petric, Frano ; Bogdan, Stjepan
Izvornik
IEEE Robotics and Automation Letters (2377-3766) 7
(2022), 2;
3757-3764
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
AI-enabled robotics, data sets for robotic vision, aerial systems: perception and autonomy
Sažetak
In this letter, we propose a novel approach to generate a synthetic aerial dataset for application in UAV monitoring. We propose to accentuate shape-based object representation by applying texture randomization. A diverse dataset with photorealism in all parameters such as shape, pose, lighting, scale, viewpoint, etc. except for atypical textures is created in a 3D modelling software Blender. Our approach specifically targets two conditions in aerial images where texture of objects is difficult to detect, namely challenging illumination and objects occupying only a small portion of the image. Experimental evaluation of YOLO and Faster R-CNN detectors trained on synthetic data with randomized textures confirmed our approach by increasing the mAP value (17 and 3.7 percentage points for YOLO ; 20 and 1.1 percentage points for Faster R-CNN) on two test datasets of real images, both containing UAV-to-UAV images with motion blur. Testing on different domains, we conclude that the more the generalisation ability is put to the test, the more apparent are the advantages of the shape-based representation.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Zrakoplovstvo, raketna i svemirska tehnika
POVEZANOST RADA
Projekti:
EK-H2020-810321 - Twinning koordinacijska akcija za širenje izvrsnosti i sudjelovanja u zračnoj robotici – AeRoTwin (AeRoTwin) (Bogdan, Stjepan, EK ) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus