Pregled bibliografske jedinice broj: 1217055
Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning
Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning // Computational Chemistry Day 2022: Book of Abstracts
Zagreb, 2022. str. 9-9 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1217055 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Evolution of Inhibition Models for Fluorinated
Cinchona Alkaloids by Machine Learning
Autori
Mikelić, Ana ; Ramić, Alma ; Primožič, Ines ; Hrenar, Tomica
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Computational Chemistry Day 2022: Book of Abstracts
/ - Zagreb, 2022, 9-9
ISBN
978-953-6076-94-9
Skup
Computational Chemistry Day 2023
Mjesto i datum
Zagreb, Hrvatska, 24.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
inhibition activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression
Sažetak
Potential energy surfaces (PES) for 25 fluorinated Cinchona alkaloids derivatives were sampled by ab initio molecular dynamics [1] and used as independent variables in establishing activity/PES multivariate linear regression models (MLR) [2, 3]. Principal components of previously measured inhibitory activities towards human acetyl- and butyrylcholinesterase were used as dependent variables. An extensive machine learning protocol was applied for generating all possible MLR models with linear combinations of original variables as well as their higher-order polynomial terms. Evolution of regression model was monitored by calculation of R2, adjusted and predicted R2. Each regression model was fully validated by leave-one- out cross- validation (LOO-CV) and the best possible activity/PES models for different dimensionalities were selected based on R2 values and the LOO-CV mean squared errors (Fig. 1).
Izvorni jezik
Engleski
Znanstvena područja
Kemija
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-3775 - Aktivnošću i in silico usmjeren dizajn malih bioaktivnih molekula (ADESIRE) (Hrenar, Tomica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb