Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1217055

Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning


Mikelić, Ana; Ramić, Alma; Primožič, Ines; Hrenar, Tomica
Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning // Computational Chemistry Day 2022: Book of Abstracts
Zagreb, 2022. str. 9-9 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1217055 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning

Autori
Mikelić, Ana ; Ramić, Alma ; Primožič, Ines ; Hrenar, Tomica

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Computational Chemistry Day 2022: Book of Abstracts / - Zagreb, 2022, 9-9

ISBN
978-953-6076-94-9

Skup
Computational Chemistry Day 2023

Mjesto i datum
Zagreb, Hrvatska, 24.09.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
inhibition activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression

Sažetak
Potential energy surfaces (PES) for 25 fluorinated Cinchona alkaloids derivatives were sampled by ab initio molecular dynamics [1] and used as independent variables in establishing activity/PES multivariate linear regression models (MLR) [2, 3]. Principal components of previously measured inhibitory activities towards human acetyl- and butyrylcholinesterase were used as dependent variables. An extensive machine learning protocol was applied for generating all possible MLR models with linear combinations of original variables as well as their higher-order polynomial terms. Evolution of regression model was monitored by calculation of R2, adjusted and predicted R2. Each regression model was fully validated by leave-one- out cross- validation (LOO-CV) and the best possible activity/PES models for different dimensionalities were selected based on R2 values and the LOO-CV mean squared errors (Fig. 1).

Izvorni jezik
Engleski

Znanstvena područja
Kemija



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-3775 - Aktivnošću i in silico usmjeren dizajn malih bioaktivnih molekula (ADESIRE) (Hrenar, Tomica, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Ines Primožič (autor)

Avatar Url Alma Ramic (autor)

Avatar Url Ana Mikelić (autor)

Avatar Url Tomica Hrenar (autor)

Poveznice na cjeloviti tekst rada:

drive.google.com

Citiraj ovu publikaciju:

Mikelić, Ana; Ramić, Alma; Primožič, Ines; Hrenar, Tomica
Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning // Computational Chemistry Day 2022: Book of Abstracts
Zagreb, 2022. str. 9-9 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Mikelić, A., Ramić, A., Primožič, I. & Hrenar, T. (2022) Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning. U: Computational Chemistry Day 2022: Book of Abstracts.
@article{article, author = {Mikeli\'{c}, Ana and Rami\'{c}, Alma and Primo\v{z}i\v{c}, Ines and Hrenar, Tomica}, year = {2022}, pages = {9-9}, keywords = {inhibition activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, isbn = {978-953-6076-94-9}, title = {Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning}, keyword = {inhibition activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Mikeli\'{c}, Ana and Rami\'{c}, Alma and Primo\v{z}i\v{c}, Ines and Hrenar, Tomica}, year = {2022}, pages = {9-9}, keywords = {inhibition activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, isbn = {978-953-6076-94-9}, title = {Evolution of Inhibition Models for Fluorinated Cinchona Alkaloids by Machine Learning}, keyword = {inhibition activity, Cinchona alkaloids, machine learning, principal component analysis, potential energy surfaces, ab initio molecular dynamics, multivariate linear regression}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font