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Instructors

Marko Ðurasević received his PhD degree from the Faculty of Electrical
Engineering and Computing, University of Zagreb in February 2018 on
the subject of generating dispatching rules for the unrelated machines
environment. He is currently employed as an Assistant Professor at the
Department of Electronics, Microelectronics, Intelligent and Computer
and Intelligent Systems of the Faculty of Electrical Engineering and
Computing. His research interests include the field of evolutionary
computing, optimization methods, machine learning, and scheduling
problems. He has published nineteen journal and conference papers.

Domagoj Jakobović received his PhD degree in 2005 at the Faculty of
Electrical Engineering and Computing, University of Zagreb, on the
subject of generating scheduling heuristics with genetic programming. He
is currently full professor at the Department of Electronics,
Microlelectronics, Computer and Intelligent Systems. His research
interests include evolutionary algorithms, optimization methods and
parallel algorithms. Most notable contributions are in the area of machine
supported scheduling, optimization problems in cryptography,
parallelization and improvement of evolutionary algorithms. He has
published more than 100 papers, lead several research projects and served
as a reviewer for many international journals and conferences. He has
supervised seven doctoral theses and more than 170 bachelor and master
theses.
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Instructors
Yi Mei is a Senior Lecturer at the School of Engineering and Computer
Science, Victoria University of Wellington, Wellington, New Zealand. He
received his BSc and PhD degrees from University of Science and
Technology of China in 2005 and 2010, respectively. His research
interests include evolutionary computation and learning in scheduling and
combinatorial optimisation, hyper-heuristics, genetic programming,
automatic algorithm design. Yi has more than 150 fully refereed
publications, including the top journals in EC and Operations Research
(OR) such as IEEE TEVC, IEEE Transactions on Cybernetics, European
Journal of Operational Research, ACM Transactions on Mathematical
Software, and top EC conferences (GECCO). He serves as a reviewer of
over 50 international journals including the top journals in EC and OR.

Su Nguyen is a Senior Research Fellow and Algorithm Lead at the
Centre for Data Analytics and Cognition (CDAC), La Trobe University,
Australia. He received his Ph.D. degree in Artificial Intelligence and Data
Analytics from Victoria University of Wellington (VUW), Wellington,
New Zealand, in 2013. His expertise includes computational intelligence,
optimization, data analytics, large-scale simulation, and their applications
in energy, operations management, and social networks. His current
research focuses on novel people-centric artificial intelligence to enhance
explainability and human-AI interaction by combining the power of
evolutionary computation techniques and advanced machine learning
algorithms. His works have been published in top peer-reviewed journals
in evolutionary computation and operations research.
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Mengjie Zhang is a Fellow of Royal Society of New Zealand, a Fellow of
IEEE, and currently Professor of Computer Science at Victoria University
of Wellington, where he heads the interdisciplinary Evolutionary
Computation Research Group. He is a member of the University
Academic Board, a member of the University Postgraduate Scholarships
Committee, Associate Dean in the Faculty of Engineering, and Chair of
the Research Committee of the Faculty of Engineering and School of
Engineering and Computer Science. His research is mainly focused on
evolutionary computation, particularly genetic programming, particle
swarm optimisation and learning classifier systems with application areas
of feature selection/construction and dimensionality reduction, computer
vision and image processing, evolutionary deep learning and transfer
learning, job shop scheduling, multi-objective optimisation, and clustering
and classification with unbalanced and missing data. He is also interested
in data mining, machine learning, and web information extraction. Prof
Zhang has published over 700 research papers in refereed international
journals and conferences in these areas. He has been serving as an
associated editor or editorial board member for over 10 international
journals including IEEE Transactions on Evolutionary Computation, IEEE
Transactions on Cybernetics, the Evolutionary Computation Journal,
ACM Transactions on Evolutionary Learning and Optimisation, Genetic
Programming and Evolvable Machines, IEEE Transactions on Emergent
Topics in Computational Intelligence, Applied Soft Computing, and
Engineering Applications of Artificial Intelligence, and as a reviewer of
over 30 international journals. He has been a major chair for eight
international conferences.
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Introduction to scheduling
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Scheduling problems

Allocation of certain activities (jobs) to a limited set of
resources (machines) [42]
Goal: optimise one or more user defined criteria
NP-hard in most scenarios
Different applications:

Manufacturing [4]
Cloud [48]
Workforce [7]
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Problem variants

Single machine - all jobs need to be scheduled on a single
machine
Parallel machines - each jobs needs to be scheduled on one
of the available machines
Flow shop - each job needs to visit all machines and all jobs
have the same route
Job shop - each job needs to visit all machines but each job
has its own route
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Parallel machines environment

n jobs need to be scheduled on one of the m available
machines
job properties:

processing time pij - how long does machine i process job j
weight wj - how important job j is
release time rj - when job j becomes available
due date dj - until when job j should be completed
...
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Additional constraints

Setup times - time required to adapt a machine for a job
Precedence constraints - some jobs can be scheduled only
after others finished executing
Machine unavailability - machines are unavailable in some
periods (breakdowns, or maintenance)
Machine eligibility - jobs can only execute on some machines
Batch scheduling - machines can process several jobs in
parallel
Auxiliary resources - additional resources are required for
processing jobs (workers or material)
...
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Optimisation criteria

Makespan - the completion time of the last job
Total (weighted) flowtime - the total time that jobs spend in
the system
Total (weighted) tardiness - the amount of time that jobs
spend executing after their due date
Maximum flowtime
Maximum tardiness
Arbitrary user defined criteria!
Multi-objective scheduling

M. Ðurasević, D. Jakobović, Y. Mei, S. Nguyen, M. Zhang Automated design of scheduling heuristics



12/82

Scheduling conditions

Parameter reliability:
Deterministic - all system parameters are known exactly
Stochastic - parameter values are not known exactly, they can
only be approximated

Parameter availability:
Offline - all system parameters are available before the
execution of the system
Online - certain system parameters become available during
the execution of the system (e.g. with the arrival of new jobs)

Schedule construction:
Static - the schedule is constructed before the system begins
executing (applicable with offline scheduling)
Dynamic - the schedule is constructed in parallel with the
execution of the system
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Solving Scheduling Problems

1 Exact algorithms [8]
Can obtain optimal solutions
High computational cost → can be used only for smaller
problems

2 Approximate algorithms [23]
Obtain a solution within a given bound from the optimal
solution
Difficult to design and applicable only to static problems

3 Heuristic methods
Provide no guarantee that they will achieve optimal results
Fast and flexible
Two variants

Improvement heuristics [13]
Constructive heuristics - dispatching rules [53]
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Improvement heuristics

Start with a complete schedule (usually created randomly or by
some simple heuristic)
Iteratively improve it using various operators
Since they search the solution space, usually only applicable
for static scheduling problems
Various metaheuristics are most commonly used [13]:

Genetic algorithms [60, 61]
Simulated annealing [24]
Tabu search [22]
Iterated local search [49]
...
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Solving Scheduling Problems

Solution method

Exact methods
Approximation

methods
Heuristic methods

Exhaustive search

Branch and bound

Mixed integer lin-
ear programming

Polynomial-time
approximation scheme

Fully polynomial-time
approximation scheme

Problem spe-
cific heuristics

Metaheuristics

Dispatching rules

Manually de-
signed rules

Apparent tar-
diness cost

Earliest due date

Min-min

Automatically
designed rules

Other heuristics

Single solution based

Simulated annealing

Tabu search

Variable neigh-
bourhood search

Population based

Evolutionary
computation

Genetic algorithm

Evolution strategy

Swarm intelligence

Ant colony
optimisation

Particle swarm
optimisation
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Dispatching rules
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Dispatching rules (DRs)

Build the schedule iteratively
At each decision point (when a machine and job are available)
determine which job should be scheduled
Only the information available at the decision point is used
(only released jobs)
Can quickly react to changes in the schedule (arrival of jobs,
breakdown of a machine, etc.)
A plethora of DRs have been proposed for various scheduling
problems and criteria [53]
For example: earliest due date (EDD) - schedule the job which
has the earliest due date
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Dispatching rule execution
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Dispatching rule execution
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Dispatching rule execution
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Dispatching rule execution
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Dispatching rule execution
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Dispatching rule execution
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Dispatching rules (DRs)

Consist of two parts: schedule generation scheme (SGS) and
priority function (PF)

Schedule generation scheme (SGS) - constructs the schedule
(determines when to schedule jobs)

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are available
3: Calculate priority πij for scheduling job j on machine i
4: Schedule the job with best priority
5: end while

Priority function (PF) - assigns priorities to jobs; e.g. WSPT:

πij =
wj

pij

M. Ðurasević, D. Jakobović, Y. Mei, S. Nguyen, M. Zhang Automated design of scheduling heuristics



25/82

Automated design of dispatching rules
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Genetic Programming

Metaheuristic optimisation
method similar to genetic
algorithms [47]
Individuals represented in
the form of expression
trees:

Inner nodes - functions
(arithmetic, Boolean,
etc.)
Leaf nodes - terminals
(variables and
constants)

+

-

*

x 3

y

/

y 5
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Automatic design of dispatching rules

The SGS is usually defined manually [56]
GP is used to evolve a new PF
Problem specific terminals need to be provided:

processing time
due date
remaining time to tardiness
time until the most suitable machine is available

A customised feature construction may be utilised to evolve
better rules [16]

expert knowledge may be beneficial! (but difficult to obtain)
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Dispatching rule execution
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Dispatching rule execution
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Dispatching rule execution
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Dispatching rule execution
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How to evolve and evaluate rules?

Machine learning: using at least two data sets
Training set:

Used during evolution to train dispatching rules
Needs to be general enough (!)
Different ways of using it:

using same instances all the time [57]
Cycle through the instances [68]

Test set:
Used to test the evolved DRs
Unseen instances, must not have been used during training
Must be to a certain degree similar to training instances,
otherwise the rule will not perform well

Potential problem: overfitting
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Representations and terminals
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Which representation to use?

GP vs. artificial neural networks [2]
Similar performance, but neural networks are not interpretable

Different GP representations: tree, gene expression
programming, Cartesian genetic programming, etc. [44]

Usually achieve similar performance
Some representations are less inclined towards evolving large
expressions - better interpretability

What should GP evolve? [31]
A function for selecting existing DRs (selective hyper-heuristic)
A new DR (constructive hyper-heuristic)
A combination of both
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Dispatching rule representations

many others could be used! (AP, stack GP, LGP, ...)
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Terminal node examples

Simple terminals - represent some system properties of jobs or
machines

processing time of job
due date of job
weight of job
...

Complex terminals - represent combinations of simple job
properties

slack - time left until the job becomes tardy
time that the job spent in the system
time when the machine which can process the job the fastest
becomes available
...
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How to select the right terminal nodes?

More terminals → larger search space
Simple terminals → large expression, GP wastes time to obtain
good subexpressions
Using a too restricted terminal set can lead to "myopic" rules
[16] - DRs consider only a single scheduling decision
Solutions:

Manually construct and select features - slow and time
consuming
Introduce feature selection in the search process

Select features by importance based on adapted preliminary
runs [26]
Constructing new features during the evolution [62]
Two stage approach where the first stage evolves rules to
determine useful features and the second stage builds on those
results [69, 67]
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Improving performance
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How to improve performance?

Improve the evolutionary process
Local search
Improve genetic programming elements
Surrogate models

Improve performance of generated rules
Ensemble learning methods
Adaptation to static conditions
Using the appropriate DR for a given problem instance
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Local search

Apply local search procedures to search the neighbourhood of
good expressions
How to define a neighbour of an expression tree?
Customized neighbourhood structures and LS operators are
proposed for this purpose - depend on the representation!
Promising initial results [29, 12]
Still open for further research
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Local search operators
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Improving genetic programming elements

Application of ϵ-lexicase selection [46] - possible to apply to
any selection scheme
Adaptive recombination operators [66] - use of a decision
vector to characterize a (sub)tree
Calculation of correlation of subtrees within a tree to select
crossover points
Subtree selection mechanisms in genetic operators [64]
Hyper-heuristic parameter configuration using fitness
landscape analysis - concentrates on genotype space [59]
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Surrogate models

Evaluation in GP is usually slow, especially for difficult
combinatorial problems
Many instances have to be used in training to ensure the
generalisation capability of the evolved rules
Solution: surrogate models [14, 37, 65]
Use simple scheduling problems to estimate the quality of
generated DRs without having to evaluate them on the entire
training set
Use a subset of instances, possible with instance rotation
Advantages:

Better convergence
Simpler rules
Some improvements in execution time
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Multitask genetic programming

Novel application for hyper-heuristics [63]
The (scheduling) problem is divided in several variants: tasks
(e.g. different utilization levels)
Individuals are divided into subpopulations and evolved for
separate tasks
Transfer knowledge between the subpopulations during the
evolution process
Represents a fruitful new research direction; requires a sensible
division in tasks
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Ensembles of DRs

A single heuristic will not work well across all the different
problems
Why not use several DRs in synergy?
Idea from machine learning
Collect DRs into ensembles and use them in synergy to
perform scheduling decisions
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Ensembles of DRs

Different methods can be used to construct ensembles:
Cooperative coevolution [41]
BagGP [52, 50]
BoostGP [52, 50]
Simple ensemble combination - relies on previously evolved
rules: simple and efficient [52, 54, 50]
Genetic algorithms - GA optimizes rule selection in ensemble
[11, 10]

Different ways of aggregating their decisions:
sum, vote, weighted vote, weighted sum combination methods
[40]
each rule in the ensemble creates the schedule and then the
best solution is selected [11, 10]
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Sum ensemble combination

M. Ðurasević, D. Jakobović, Y. Mei, S. Nguyen, M. Zhang Automated design of scheduling heuristics



48/82

Vote ensemble combination
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Tackling static problems

DRs can also be applied in static conditions when all
information is available beforehand
Idea: DRs should use all the information about the problem
Approaches:

Look-ahead – calculate priorities for unreleased jobs [15]
Iterative DRs – rebuild the schedule several times [33]
Rollout – at each decision point determine the best option via
a DR [55]

Some methods can even match those of improvement
heuristics!
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Selecting the appropriate DR

GP evolves a lot of DRs
Open question: which should we select (i.e. which performs
best for the given problem kind or problem instance)?
Impossible to know beforehand in dynamic problems
Idea: based on properties of the problem that become known
during execution, try to select the most appropriate DR using
some classification algorithms [71]
Good initial results, but the methods need a lot of fine tuning
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Selecting the appropriate DR
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Other topics
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What if we want to optimise multiple objectives?

Usually several criteria need to optimised in real world problems
Manually designed DRs are mostly adapted for optimising only
a single criterion
Criteria are usually conflicting - impossible to design a rule
which optimises all criteria well
Various multi-objective genetic algorithms can be used to
design DRs for optimising several criteria: NSGA-II, NSGA-III,
MOEA/D, etc. [32, 36, 58]
The automatically generated DRs show a much better
performance than manually designed rules for various
multi-objective problems
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What if we want to optimise multiple objectives?
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What if we do not know all parameters exactly?

In many problems parameters are stochastic
We do not know exact values of parameters until they are
executed

For example, we do not know the exact processing time until
the job finishes processing

Processing times mostly considered as uncertain [21]
Uncertain parameters are modelled with stochastic variables
Uncertainty about the parameters is included in genetic
programming with additional terminals [20]
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But what about more complex problems?

Many papers consider additional constraints:
Setup times [19, 18]
Machine breakdowns [38, 39, 18]
Precedence constraints [19, 18]
Machine eligibility [19]
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But what about more complex problems?

Required to adapt the SGS and PF of the DRs
SGS adaptation - needs to ensure that only feasible schedules
are constructed

Schedule only jobs for which all predecessors have executed
Schedule jobs only on eligible machines
...

PF adaptation - provide information about the additional
constraints

Setup time of job j on machine i
Number of predecessors/successors for job j
...
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Interpretability
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Let’s interpret a priority function
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Not really interpretable...
We can try to manually reduce the complexity
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Manual simplification
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Let’s interpret a priority function

Expressions become bloated, difficult to interpret
Possible remedies:

Exact and heuristic simplification [45]
Dimensionally aware GP - evolves expressions which follow
rules of dimensionality [57, 27]
Multi-objective optimisation - one criterion is the
size/complexity of the expression [43]
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Example of simplification
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Example of simplification
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Example of simplification
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Example of simplification

M. Ðurasević, D. Jakobović, Y. Mei, S. Nguyen, M. Zhang Automated design of scheduling heuristics



66/82

Conclusions and outlook
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Other notable scheduling problem variants

Order acceptance and scheduling - each job can be rejected or
accepted for scheduling [28]
Resource constrained project scheduling problem - scheduling
consumes additional limited resources [51, 5]
One machine scheduling with variable capacity - the capacity
of the machine (number of jobs it can process in parallel)
varies over time [9, 12]
Due date assignment rules [35, 34]
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Similar applications on other problems

Vehicle routing problem [17]
Capacitated arc routing problem [1]
Travelling salesman problem [6]
Bin packing problem [25]
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Conclusion

Many existing research directions [3, 30]
A heavily investigated field
Many different scheduling problem variants, most not yet
investigated
A lot of room for further improvement
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Additional resources
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Literature

Survey papers about automated design of DRs
Jurgen Branke, Su Nguyen, Christoph W. Pickardt, and

Mengjie Zhang. Automated design of production scheduling
heuristics: A review.
IEEE Transactions on Evolutionary Computation,
20(1):110–124, February 2016

Su Nguyen, Yi Mei, and Mengjie Zhang. Genetic programming
for production scheduling: a survey with a unified framework.
Complex & Intelligent Systems, 3(1):41–66, February 2017

Recent book on production scheduling:
Fangfang Zhang, Su Nguyen, Yi Mei, and Mengjie Zhang.

Genetic Programming for Production Scheduling.
Springer Singapore, 2021
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Upcoming sessions and talks

IEEE WCCI Special session on scheduling and combinatorial
optimisation

https://meiyi1986.github.io/cec2022-esco/
IEEE WCCI Special session on evolutionary machine learning
for planning and scheduling

https://fangfang-zhang.github.io/CEC2022EMLPS/
IEEE WCCI tutorial on evolutionary machine learning for
combinatorial optimisation

https://fangfang-zhang.github.io/CEC2022Tutorial/
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Codes and other resources

IEEE Taskforce on Evolutionary Scheduling and Combinatorial
Optimisation

https://homepages.ecs.vuw.ac.nz/~yimei/ieee-tf-esco/
Codes and instances

https://github.com/meiyi1986/GPJSS
http://gp.zemris.fer.hr/hyddra/
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