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ABSTRACT
Vehicle routing problems (VRPs) that model transport processes
have been intensively studied. Due to environmental concerns, the
electric VRP (EVRP), which uses only electric vehicles, has recently
attracted more attention. In many cases, such problems need to be
solved in a short time, either due to their complexity or because of
their dynamic nature. Routing policies (RPs), simple heuristics that
build the solution incrementally, are a suitable choice to solve these
problems. However, it is difficult to design efficient RPs manually.
Therefore, in this paper, we consider the application of genetic
programming (GP) to automatically generate new RPs. For this
purpose, three RP variants and several domain-specific terminal
nodes are defined to optimise three criteria. The results show that
GP is able to automatically designed RPs perform, and it finds
RPs with good generalisation properties that can effectively solve
unseen problems.
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1 INTRODUCTION
The vehicle routing problem (VRP) is one of the most important
and well-studied combinatorial optimisation problems in which a
set of routes must be determined for a fleet of vehicles that have to
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serve a given number of customers [20]. Due to the various real-
world applications of VRP, different variants of the problem have
been proposed over the years, some of which include additional
features such as time windows (VRPTW) [18], time-dependent
travel duration (TDVRP) [11], and many others [1]. The fact that
current distribution logistics strategies are not sustainable has led
much of the research to shift to VRP variants usually referred to as
green VRP (GVRP) [16], which take into account the problems of
sustainable transportation [14]. One variant of the GVRP that has
received much attention in recent years is the electric VRP (EVRP)
[7].

Constructive heuristics [13] to solve VRPs are the best suited
when solutions need to be found more quickly, e.g., for larger prob-
lem sizes or in dynamic environments. However, developing ef-
ficient constructive heuristics is difficult because it depends on
several factors such as the optimised criterion and additional prob-
lem properties. This motivates the search for approaches that can
design such heuristics automatically as genetic programming (GP),
which has been widely used to develop scheduling rules for various
scheduling problems, including: job shop scheduling [19], unre-
lated machines scheduling [6], one machine scheduling [10] or
constrained project scheduling [3], among others. In addition, effi-
cient heuristics have been automatically generated using GP for the
capacitated arc routing problem, which has certain similarities to
VRP [15]. However, only one study has investigated the automatic
development of heuristics for the VRPTW [12]. In it, the authors
showed that automatically developed heuristics significantly out-
perform several manually developed heuristics.

In this paper, we study the application of GP to develop novel con-
structive heuristics, called routing policies, for the EVRP with time
windows (EVRPTW). The remainder of the paper is organised as
follows. Section 2 provides the definition of the EVRPTW problem
under consideration. Section 3 describes the routing policies used
to construct the solution to the problem. The GP hyper heuristic
method is described in Section 4. Section 5 outlines the experimen-
tal setup and the results obtained. Finally, Section 6 presents the
conclusion and future research directions.

2 PROBLEM DEFINITION
In this paper we use the formulation proposed in [17]. The problem
is represented as a fully connected graph, where the set of vertices
𝑁 represents the union of the set of customers 𝑃 , the set of charging
stations 𝑆 , and the depot 𝐷 . In the graph, the arc value 𝑑𝑛𝑖,𝑛 𝑗 repre-
sents the distance between the vertices 𝑛𝑖 and 𝑛 𝑗 . The distance can
be used to calculate the time 𝑡𝑛𝑖,𝑛 𝑗 and the energy 𝑒𝑛𝑖,𝑛 𝑗 required
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for a vehicle to travel this distance. The objective of the problem
is to serve all customers with a homogeneous fleet of𝑚 vehicles,
denoted as𝑉 . Each vehicle has two properties, the remaining cargo
capacity 𝑐𝑣𝑘 and the current energy level of the vehicle 𝑒𝑣𝑘 . All
vehicles start at the depot with full capacity and energy. A route
𝑅𝑣𝑘 is created for each vehicle by assigning it customers to visit.
When a vehicle adds a customer to its route, it must be ensured
that this route remains feasible in terms of capacity and energy. In
terms of capacity, this means that the vehicle 𝑣𝑘 must have suffi-
cient remaining capacity when serving the customers on its route.
In terms of energy, it is necessary to ensure that the vehicle has
sufficient remaining energy at any point along the route to visit the
next customer. To this end, vehicles may also visit charging stations
that fully recharge the vehicle. It is assumed that the charging sta-
tions have infinite charging capacity and can be visited by multiple
vehicles simultaneously. At the end of the route, the vehicle returns
to the depot.

In this paper, we consider the EVRPTW variant, which extends
the basic problem by introducing time windows. The beginning
of the time window will be denoted as ready time, while the end
of the time window is called the due date. Unlike the energy and
capacity constraints above, which are treated as hard constraints,
the constraints imposed by time windows are considered as soft
constraints and are optimised. We assume that the customer cannot
be served before the start of its time window, and if the vehicle
arrives earlier, it must wait until the beginning of the time window.
However, the vehicle may arrive after the time window and serve
the customer. In this case, however, the vehicle invokes a certain
tardiness which must be minimised.

In this work, three objectives are optimised separately: 1) the
number of vehicles used, 2) the total energy consumed, and 3) the
total tardiness of the vehicles. The tardiness is calculated as the
difference between the arrival time of the vehicle 𝑡𝑣𝑘 to vertex 𝑛𝑖
and its due date 𝑑𝑑𝑛𝑖 , i.e.𝑚𝑎𝑥 (0.0, 𝑡𝑣𝑘 − 𝑑𝑑𝑛𝑖 ).

3 ROUTING POLICIES
RPs are simple constructive heuristics that incrementally create
routes for vehicles in VRPs. Each RP consists of two parts, a route
generation scheme and a priority function.

3.1 Route generation scheme
The route generation scheme (RGS) is used to determine which
location to go to next once a vehicle is available. The serial RGS
creates routes vehicle by vehicle. In this version, a complete route is
first created for one vehicle and then another route is created for the
next vehicle. Another option is that the routes for all vehicles are
created in parallel. In this case, the RGS starts with a certain number
of vehicles and constructs the routes for all of them simultaneously.
This is done so that the vehicle that is available earliest is selected
and the next destination is determined for it. Once the routes for
all vehicles are constructed, there is a possibility that there are still
unattended customers. In this case, this RGS reverts to the serial
approach and adds vehicle by vehicle to the solution and constructs
the routes for them until all customers are served. This version is
called the semiparallel RGS. Finally, another strategy can be used
to add vehicles to the solution when a customer cannot be served

by any of the vehicles, which is called parallel RGS. In this version,
instead of adding new vehicles at the end by switching to serial RGS,
a new vehicle is added immediately when another vehicle returns
to the depot. The route for the newly added vehicle is created in
parallel with all other currently available vehicles, as if it were
available from the beginning.

In each iteration, the RGS first selects the active vehicle 𝑣𝑘 for
which the next destination is determined. The selection of the ve-
hicle depends on which RGS variant is used. If the serial variant
is used, the active vehicle is the first vehicle for which the route
has not yet been completed. For the other two variants, the active
vehicle is the vehicle that becomes available earliest. After the ve-
hicle is selected, all unserved customers are ranked using a priority
function (see next section) and the customer with the highest value
is selected. Then the RGS checks if the vehicle has enough capacity
to serve the selected customer 𝑛𝑖 . If so, customer 𝑛𝑖 is set as the des-
tination, otherwise the vehicle returns to the depot. At this point, it
is necessary to ensure that the vehicle has enough energy to reach
the next selected customer, and that after serving a customer, the
vehicle has enough energy to go to the nearest charging station. If
this were not the case, there would be a possibility that a vehicle
would not have enough energy to leave the current customer and
travel to another location. If both conditions are met, then the vehi-
cle 𝑣𝑘 can drive directly to the customer 𝑛𝑖 . Otherwise, the vehicle
must visit one or more charging stations to reach the customer. In
this case, the charging station that can be reached without violating
the energy constraint and that is closest to customer 𝑛𝑖 is selected.
The same strategy is applied when the vehicle returns to the depot,
but in this case the second constraint is not checked since the visit
to the depot represents the end of the route.

3.2 Priority function
The priority function (PF) applied in the RGS is used to assign a
numeric value to each customer based on the current state of the
system. Based on the assigned numerical value, the RGS selects
the most appropriate customer to visit. Therefore, the PF must
use various system attributes in a meaningful way to assign a
priority to each customer. For example, a simple PF could be defined
as 1

𝑑𝑛𝑖 ,𝑛𝑗

, which would mean that the customer 𝑗 closest to the
current customer 𝑖 should be selected. However, it is immediately
apparent that such a PF will not perform well in general because
it does not take into account other system attributes. To produce
high-performance PFs, the PF should base its decision on several
system parameters. However, it is quite difficult to design such
sophisticated PFs manually.

4 HYPER-HEURISTIC METHOD FOR
GENERATING ROUTING POLICIES

In this work, we have opted for a GP based Hyper-Heuristic ap-
proach similar to the one proposed in [9]. To adapt GP to a particular
problem, the most important part is to define a set of primitives
to be used to construct the expressions. The set of primitives con-
sists of terminal symbols, which are used to encode the relevant
information about the domain, and a set of functions, which can be
either unary or binary. The set of terminal nodes we use is listed
in Table 1. In developing the terminals, we chose simple terminals
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that provide basic information about the system and avoided more
complex terminals that could be defined as a combination of several
simple ones. The terminal nodes 𝐸𝑛𝑖 , 𝐷𝑛𝑖 , 𝐷𝐷𝑛𝑖 , 𝑆𝑇𝑛𝑖 , and 𝑅𝑇𝑛𝑖 rep-
resent the basic information about the customer 𝑛𝑖 that needs to be
visited. Terminals𝐶𝑣𝑘 ,𝑇𝑣𝑘 and 𝐸𝑣𝑘 represent the information about
the active vehicle 𝑣𝑘 that is updated each time a vehicle visits a cus-
tomer. The remaining terminals 𝐸𝐶𝑛𝑖 , 𝐸𝑅𝑃𝑛𝑖 , 𝐸𝐷𝑒𝑝𝑛𝑖 , 𝐸𝑅𝑃𝑝𝑣𝑘 , and
𝐸𝐷𝑒𝑝𝑝𝑣𝑘 provide information about the customer and the vehicle
relative to other customers, the depot, and the charging stations. All
terminals are more or less self-explanatory, except for the energy
required to visit the centroid 𝐸𝐶𝑛𝑖 terminal. As suggested in [2], the
distance to the centroid can be helpful to avoid visiting isolated cus-
tomers. In this way, 𝐸𝐶𝑛𝑖 is defined as the energy required to travel
from the centroid to the customer 𝐸𝐶𝑛𝑖 , which is the arithmetic
mean of positions of all unvisited customers except 𝑛𝑖 . In addition
to the above terminals, constant values of 0, 0.1, 0.2, . . . , 1 are also
used. Regarding the function used, we have used the symbols −, +,
/, ×,𝑚𝑎𝑥 and𝑚𝑖𝑛 as binary functions, whereas −, 𝑝𝑜𝑤2, 𝑠𝑞𝑟𝑡 , 𝑒𝑥𝑝 ,
𝑙𝑛,𝑚𝑎𝑥0 and𝑚𝑖𝑛0 were used as unary functions.

Table 1: Terminal set used to build expression trees. 𝑣𝑘 is the
active vehicle, 𝑝𝑣𝑘 is the actual position of 𝑣𝑘 and 𝑛𝑖 is the
destination of 𝑣𝑘 .

Symbol Description

𝐸𝑛𝑖 Energy required to visit 𝑛𝑖
𝐷𝑛𝑖 Demand of 𝑛𝑖
𝐷𝐷𝑛𝑖 Due date of 𝑛𝑖
𝑆𝑇𝑛𝑖 Service Time of 𝑛𝑖
𝑅𝑇𝑛𝑖 Ready time of 𝑛𝑖
𝐶𝑣𝑘 Remaining capacity of 𝑣𝑘
𝑇𝑣𝑘 Current time of 𝑣𝑘
𝐸𝑣𝑘 Remaining energy of 𝑣𝑘
𝐸𝐶𝑛𝑖 Energy required to visit the centroid from 𝑛𝑖

𝐸𝑅𝑃𝑛𝑖 Energy required to visit the nearest charging station from 𝑛𝑖

𝐸𝐷𝑒𝑝𝑛𝑖 Energy required to visit the depot from 𝑛𝑖

𝐸𝑅𝑃𝑝𝑣𝑘 Energy required to visit the nearest charging station from 𝑝𝑣𝑘
𝐸𝐷𝑒𝑝𝑝𝑣𝑘 Energy required to visit the depot from 𝑝𝑣𝑘

To compute the fitness function, each individual is interpreted
as a PF embedded in the RGS and used to solve a set of problem
instances of the EVRP. In this case, the evolved tree is used to assign
a priority to each customer based on which the best customer is
selected. If the priority value calculated by the tree is undefined
(e.g., if a division by 0 has occurred) or infinite, it is interpreted as
0. Since the objectives that are optimised for the EVRP problem are
all minimised, the fitness is defined as the inverse of the optimised
criterion value. If two rules give exactly the same fitness, the number
of symbols (size) is used for tie breaking in favour of the smaller
trees.

5 EXPERIMENTAL ANALYSIS
5.1 Setup
We conducted an experimental study aimed at analysing the GP.
To this end, we implemented a prototype in Java 8 and ran a series
of experiments on a Linux cluster (Intel Xeon 2.26 GHz. 128 GB
RAM).

The GP uses the one-point crossover and subtree mutation as
genetic operators with probabilities 1.00 and 0.02, respectively. The
population is composed of 200 individuals that are initialised by the
Ramped half-and-half. Themaximum execution time of 100minutes
is used as the termination criterion to ensure a fair comparison
between all runs. Each experiment was repeated 100 times to obtain
statistically significant results. To test whether differences exist
between different variants, the Kruskal-Wallis test with Bonferroni
analysis is used. The results are considered significantly different if
a p-value below 0.05 is obtained.

The benchmark set consists of 92 EVRP instances obtained from
[17], which are divided into three categories: random, cluster and
random-cluster, depending on how the customer locations were
generated. This set of instances is divided into a training set, which
is used by GP to develop RPs, and a test set, which is used to evalu-
ate their performance. These sets are constructed so that for each
instance type, the instances are sorted by the number of customers
and the instances with the odd index are added to the training set
while the remaining instances are added to the test set. The result is
a training set that consists of 47 instances, while the test set consists
of 45 instances.

5.2 Results
Figure 1 shows boxplots for the results obtained on the training
and test sets for optimisation of the number of vehicles, energy and
tardiness criteria. We observe that the patterns of results obtained
on the training and test sets are quite similar. This suggests that
the selected training set is representative enough and that the GP
produces policies that behave similarly in both problem sets.

By optimising the number of vehicles, GP is able to create rules
that generate solutions with the optimal number of vehicles for
the serial and semiparallel scheme, since they use the number of
vehicles equal to the lower bound. When minimising the energy
criterion, we find that the serial RGS performs best by a large
margin. This seems to indicate that the other two RGSs are not
suitable for this objective, regardless of the method to create the
priority function. For the tardiness criterion, the best results were
obtained with the parallel RGS. The semiparallel scheme performs
slightly worse, while the serial RGS performs the worst. In this case,
the best results are expected to be obtained by the parallel version,
since it immediately includes more vehicles in the solution. This
allows more customers to be served on time, but at the cost of using
13% more vehicles. However, it can be noted that the semiparallel
and serial versions achieve similar results in terms of the number
of vehicles. This shows that the parallel and semiparallel schemes,
which are constructing the schedule by creating the routes for
multiple vehicles in parallel, work better for this criterion.

Additionally, we can observe significant differences exist be-
tween the tested RGSs, which is especially evident when optimising
the energy criterion. Statistical tests were performed to determine
if the differences were significant, and the resulting p-values are
shown above the boxplots. Based on these values, it is clear that
there are significant differences between the RGSs for energy and
tardiness criteria, so a post hoc analysis was performed. The Dunn
test and Bonferroni correction were used to determine that there
were significant differences between all RGSs. In terms of energy,
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Figure 1: Boxplot from the results

the analysis showed that the serial RGS achieved significantly bet-
ter results than the other two. In addition, the semiparallel RGS
achieved a significantly better result than the parallel RGS. On
the other hand, when considering the tardiness criterion the paral-
lel RGS significantly outperforms the other two schemes, and the
semiparallel RGS significantly outperforms the serial version.

6 CONCLUSIONS AND FUTUREWORK
This paper proposes the generation of RPs by GP to solve the Elec-
tric Vehicle Routing Problem with Time Windows (EVRPTW) and
optimise three criteria: the number of vehicles, the energy con-
sumed, and tardiness while visiting customers. Three RP variants
are proposed and GP is adapted to generate PFs automatically for
such RPs. The obtained results show that different RP variants
perform better in solving different criteria, which highlights the
importance of designing good route generation schemes in addi-
tion to PFs. In future work it is planned to extend this research
in several directions. First, the problem will be extended to con-
sider time windows as hard constraints. In addition, it is planned to
analyse the proposed method in more detail and investigate how
different terminal sets or expression sizes affect the performance.
Another direction will also be to apply multi-objective optimisation
to generate RPs that optimise multiple criteria simultaneously [4].
Finally, to improve the performance of the generated RPs, different

ensemble learning methods will be tested to develop ensembles of
RPs [5, 8].
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