Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1209431

Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model


Stančin, Igor; Zelenika Zeba, Mirta; Friganović, Krešimir; Cifrek, Mario; Jović, Alan
Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model // Applied Sciences-Basel, 12 (2022), 16; 8146, 13 doi:10.3390/app12168146 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1209431 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model

Autori
Stančin, Igor ; Zelenika Zeba, Mirta ; Friganović, Krešimir ; Cifrek, Mario ; Jović, Alan

Izvornik
Applied Sciences-Basel (2076-3417) 12 (2022), 16; 8146, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
drowsiness detection ; EEG features ; machine learning ; recurrence quantification analysis ; sex classification ; sex differences

Sažetak
Objective detection of a driver’s drowsiness is important for improving driving safety, and the most prominent indicator of drowsiness is changes in electroencephalographic (EEG) activity. Despite extensively documented behavioral differences between male and female drivers, previous studies have not differentiated drowsiness detection models based on drivers’ sex. Therefore, the overall aim of this study is to demonstrate that drowsiness detection can be improved with the use of drivers’ sex information, either as a feature or as separate sex-dependent datasets. Additionally, we aim to provide a reliable EEG- based sex classification model. The used dataset consists of 17 male and 17 female drivers which were evaluated during alert and drowsy sessions. Frequency-domain and recurrence quantification analysis EEG features were used. Four classification algorithms and three feature selection methods were applied to build the models. The accuracy of drowsiness detection based on sex-dependent datasets is 84% for male drivers and 88% for female drivers, which is 3% and 7% better, respectively, than the classification without information about driver’s sex (81%). The model for sex classification based on EEG achieved high accuracy: 97% correctly identified participants in alert sessions and 96% in drowsy sessions. All participants were correctly classified after the application of majority voting on five algorithm runs. The results suggest that sex-dependent datasets improve the accuracy of drowsiness models, which may be relevant to a variety of drowsiness detection systems currently being developed in the field.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Psihologija



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Stančin, Igor; Zelenika Zeba, Mirta; Friganović, Krešimir; Cifrek, Mario; Jović, Alan
Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model // Applied Sciences-Basel, 12 (2022), 16; 8146, 13 doi:10.3390/app12168146 (međunarodna recenzija, članak, znanstveni)
Stančin, I., Zelenika Zeba, M., Friganović, K., Cifrek, M. & Jović, A. (2022) Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model. Applied Sciences-Basel, 12 (16), 8146, 13 doi:10.3390/app12168146.
@article{article, author = {Stan\v{c}in, Igor and Zelenika Zeba, Mirta and Friganovi\'{c}, Kre\v{s}imir and Cifrek, Mario and Jovi\'{c}, Alan}, year = {2022}, pages = {13}, DOI = {10.3390/app12168146}, chapter = {8146}, keywords = {drowsiness detection, EEG features, machine learning, recurrence quantification analysis, sex classification, sex differences}, journal = {Applied Sciences-Basel}, doi = {10.3390/app12168146}, volume = {12}, number = {16}, issn = {2076-3417}, title = {Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model}, keyword = {drowsiness detection, EEG features, machine learning, recurrence quantification analysis, sex classification, sex differences}, chapternumber = {8146} }
@article{article, author = {Stan\v{c}in, Igor and Zelenika Zeba, Mirta and Friganovi\'{c}, Kre\v{s}imir and Cifrek, Mario and Jovi\'{c}, Alan}, year = {2022}, pages = {13}, DOI = {10.3390/app12168146}, chapter = {8146}, keywords = {drowsiness detection, EEG features, machine learning, recurrence quantification analysis, sex classification, sex differences}, journal = {Applied Sciences-Basel}, doi = {10.3390/app12168146}, volume = {12}, number = {16}, issn = {2076-3417}, title = {Information on Drivers’ Sex Improves EEG-Based Drowsiness Detection Model}, keyword = {drowsiness detection, EEG features, machine learning, recurrence quantification analysis, sex classification, sex differences}, chapternumber = {8146} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font